

العلوم

الصف الثالث المتوسط - الفصل الدراسي الأول

Original Title:

Glencoe Science SCIENCE LEVEL BLUE

By: Alton Biggs Ralph M. Feather Jr., PhD Peter Rillero, PhD Dinah Zike

العلوم

أعدُّ النسخة العربية: شركة العبيكان للتعليم

التحرير والمراجعة والمواءمة

د. أحمد محمد رفيع
د. صالح بن إبراهيم النفيسة
موسى عطا الله الطراونة
د. منصور بن عبدالعزيز بن سلمه
عبدالرحمن بن علي العريني
ناصر بن محمد بن طرجم الدوسري
زهير يوسف حداد

التعريب والتحرير اللغوي نخبة من المتخصصين

المشرف على لجان المراجعة د. محمد بن عبد الله الزغيبي

المراجعة والاعتماد النهائي أ. وفاء عبد الحميد البريكان أ. وفاء محمد عبد الله

www.macmillanmh.com

www.obeikaneducation.com

Obëkon

English Edition Copyright © 2008 the McGraw-Hill Companies. Inc. All rights reserved.

Arabic Edition is published by Obeikan under agreement with The McGraw-Hill Companies. Inc. © 2008.

الطبعة العربية: مجموعة العبيكان للاستثمار وفقًا لاتفاقيتها مع شركة ماجروهل^{© ٢٠٠٨م} ٢٤٢٩هـ.

حقوق الطبعة الإنجليزية محفوظة لشركة ماجروهل[©] ٢٠٠٨م.

لا يسمح بإعادة إصدار هذا الكتاب أو نقله في أي شكل أو واسطة، سواءً أكانت إلكترونية أو ميكانيكية، بما في ذلك التصوير بالنسخ «فوتوكوبي»، أو التسجيل، أو التخزين والاسترجاع، دون إذن خطى من الناشر.

بيني إلله الرجمز الحيثم

الحمد لله رب العالمين والصلاة والسلام على أشرف الأنبياء والمرسلين وعلى آله وصحبه أجمعين وبعد:

تهتم العلوم الطبيعية بدراسة الظواهر المادية على الأرض، وفي الكون المحيط بنا، وتشكل أساسًا للعلوم التطبيقية، وتسهم معها في تقدم الأمم ورقي الشعوب، وتحقيق الرفاهية للإنسان؛ فالعلم هو مفتاح النجاح والتنمية. ولهذا يحظى تعليم العلوم الطبيعية بمكانة خاصة في الأنظمة التربوية؛ حيث تُكرَّس الإمكاناتُ لتحسين طرقُ تدريسها، وتطوير مضامينها وتنظيمها وفق أحدث التوجهات التربوية، وتطوير وتوفير المواد التعليمية التي تساعد المعلمين والطلاب على تحقيق أهداف تدريس هذه المادة على الوجه الأكمل والأمثل.

ويأتي اهتهام المملكة بتطوير المناهج الدراسية وتحديثها من منطلق الاهتهام الذي توليه حكومة خادم الحرمين الشريفين في تطوير التعليم وتحسين مخرجاته ومواكبة التطورات العالمية على مختلف الصعد.

وقد جاء كتاب العلوم للصف الثالث المتوسط بجزأيه الأول والثاني في إطار مشروع تطوير مناهج الرياضيات والعلوم الطبيعية في المملكة، الذي يهدف إلى إحداث تطور نوعي في تدريس هاتين المادتين؛ بحيث يكون الطالب فيها محور العملية التعليمية التعلّمية؛ فهناك بنية جديدة وتنظيم للمحتوى يستند إلى معايير المحتوى الخاصة بهذا الصف، ويستند كذلك إلى أحدث نظريات التعلم والمهارسات التدريسية الفاعلة على المستوى العالمي. ويتعلم الطالب في هذا الكتاب من خلال ممارسته النشاطات العملية والبحث والاستقصاء بمستوياته المختلفة. والأمر نفسه للمعلم؛ فقد تغير دوره من مصدر يدور حوله التعليم إلى موجّه وميسّر لتعلم الطلاب. ولهذا جاءت أهداف هذا المشروع من خلال هذا الكتاب لتؤكّد على تشجيع الطلاب على طرح التساؤلات لفهم الظواهر الطبيعية المحيطة بهم وتفسيرها، وتزويدهم بالمعارف والمهارات والاتجاهات الإيجابية للمشاركة الفاعلة.

وقد جاء كتاب الصف الثالث المتوسط بجزأيه في ست وحدات، هي: طبيعة العلم وتغيرات الأرض، وكيمياء المادة، والروابط والتفاعلات الكيميائية، وأسس الحياة، والحركة والقوة، والكهر ومغناطيسية.

وقد جاء تنظيم وبناء محتوى كتاب الطالب بأسلوب مشوق، وبطريقة تشجع الطالب على القراءة الواعية والنشطة، وتسهّل عليه بناء أفكاره وتنظيمها، وممارسة العلم كما يُهارسه العلماء. تبدأ كل وحدة دراسية بسؤال استهلالي مفتوح، وخلفية نظرية، ومشاريع الوحدة التي تدور حول تاريخ العلم، والتقنية، وبناء النهاذج، وتوظيف الشبكة الإلكترونية في البحث. وتتضمّن كل وحدة عددًا من الفصول، يبدأ كل منها بصورة افتتاحية تساعد المعلم على التمهيد لموضوع الفصل من خلال مناقشة مضمون الصورة، وتسهم في تكوين فكرة عامة لدى الطلاب حول موضوعات الفصل، ثم نشاطات تمهيدية

تشمل: التجربة الاستهلالية، والمطويات، والتهيئة للقراءة، ثم ينتهي بمراجعة الفصل. ويتضمن الفصل عددًا من الدروس، يشتمل كل منها على افتتاحية تحتوي على أهداف الدرس، وأهميته، ومراجعة المفردات السابقة، والمفردات الجديدة. وفي متن الدرس يجد الطالب شرحًا وتفسيرًا للمحتوى الذي تم تنظيمه على شكل عناوين رئيسة وفرعية بألوان معبرة، وهوامش تساعد على استكشاف المحتوى. وتُعنى الدروس ببناء المهارات العملية والعلمية من خلال التجارب العملية، والتطبيقات الخاصة ببناء المهارات في الرياضيات والعلوم. ويختتم كل درس بمراجعة تتضمَّن ملخصًا لأبرز الأفكار الواردة في الدرس، واختبر نفسك. ويدعم عرضَ المحتوى في الكتاب الكثيرُ من الصور والأشكال والرسوم التوضيحية المختارة والمعدة بعناية لتوضيح المادة العلمية وتعزيز فهم مضامينها. كما يتضمن كتاب الطالب ملحقًا خاصًا بمصادر تعلم الطالب، ومسردًا بالمصطلحات.

وقد وُظّف التقويم على اختلاف مراحله بكفاءة وفاعلية، فقد راعى تنُّوع أدواته وأغراضه، ومن ذلك، القبلي، والتشخيصي، والتكويني (البنائي)، والختامي (التجميعي)؛ إذ يمكن توظيف الصور الافتتاحية في كل وحدة وفصل، والأسئلة المطروحة في التجربة الاستهلالية بوصفها تقويمًا قبليًّا تشخيصيًّا لاستكشاف ما يعرفه الطلاب عن موضوع الفصل. ومع التقدم في دراسة كل جزء من المحتوى يُطرح سؤالٌ تحت عنوان «ماذا قرأت؟»، وتجد تقويمًا خاصًّا بكل درس من دروس الفصل يتضمن أفكار المحتوى وأسئلةً تساعد على تلمُّس جوانب التعلُّم وتعزيزه، وما قد يرغب الطالب في تعلُّمه في الأقسام اللاحقة. وفي نهاية الفصل يأتي دليل مراجعة الفصل متضمًّنًا تلخيصًا لأهم الأفكار الخاصة بدروس الفصل، وخريطة للمفاهيم تربط أبرز المفاهيم الرئيسة التي وردت في الدرس. يلي ذلك تقويم الفصل والذي يشمل أسئلة وفقرات تربط أبرز المفاهيم الأداء. كما يتضمن الكتاب في نهاية كل وحدة دراسية اختبارًا مقننًا يتضمن أسئلة وفقرات النقد، وأنشطة لتقويم الأداء. كما يتضمن الكتاب في نهاية كل وحدة دراسية اختبارًا مقننًا يتضمن أسئلة وفقرات التبارية تسهم في إعداد الطلاب للاختبارات الوطنية والدولية، بالإضافة إلى تقويم تحصيلهم وفقرات التي سبق دراستها في الوحدة.

ويرافق هذا الكتابَ كراسةٌ للتجارب العملية، تهدف إلى تطوير مهارات الاستقصاء العلمي لدى الطلاب، وتنمية الاتجاهات الإيجابية لديهم نحو العلم والعلماء. وقد تمت الإشارة إلى هذه التجارب في المتن، ليتم تنفيذها بشكل يتكامل مع محتوى الكتاب.

والله نسأل أن يحقق الكتابُ الأهدافَ المرجوة منه، وأن يوفق الجميع لما فيه خير الوطن وتقدمه وازدهاره.

قائمة المحتويات

كيف تستخدم كتاب العلوم.....

طبيعة العلم وتغيرات الأرض

الفصل تركيب الذرة

٠	 ذهنية	تصورات	راءة –	نهبأ للق	

الدرس ١: نماذج النرة٨٦ الدرس ٢: النواة ٥٩ استقصاء من واقع الحياة..... دليل مراجعة الفصل مراجعة الفصل

تهيأ للقراءة - نظرة عامة
لدرس ۱: أسلوب العلم *·······۱۸
لدرس ۲: عمل العلم * ۲۲
لدرس ٣: العلم والتقنية والمجتمع * ٣٦
ستقصاء من واقع الحياة
دليل مراجعة الفصل
ي احعة الفصل

طبيعة العلم

تغيرات الأرض

أتهيأ للقراءة - المراقبة الواعية ٤٨
الدرس ۱: الزلازل٠٠٠
الدرس ٢: البراكين٩٥
الدرس ٣: الصفائح الأرضية وعلاقتها بالزلازل
والبراكين *
استقصاء من واقع الحياة٧٧
دليل مراجعة الفصل٥٧
مراجعة الفصل٧٦
الاختبار المقنن

أتهيأ للقراءة - الربط
الدرس ١: مقدمة في الجدول الدوري١١٤
الدرس ٢: العناصر الممثلة
الدرس ٣: العناصر الانتقالية١٢٨
استقصاء من واقع الحياة
دليل مراجعة الفصل
مراجعة الفصل
الاختبار المقنن

قائمة المحتويات

الروابط والتفاعلات الكيميائية

التفاعلات الكيميائية

أتهيأ للقراءة - التوقع
الدرس ١: الصيغ والمعادلات الكيميائية١٧٨
لدرس ٢: سرعة التفاعلات الكيميائية ************************************
استقصاء من واقع الحياة
دليل مراجعة الفصلدليل مراجعة الفصل
مراجعة الفصل
الاختبار المقنن
مصادر تعليمية للطالب
و المالة المالك المنالة المالك

کیف تسانقدم ...

كتاب العلوم؟

لماذا تحتاج إلى كتاب العلوم؟

هل سبق أن حضَرْتَ درس العلوم فلم تستوعبه، أو استوعبته كله لكنك عندما ذهبت إلى البيت وجدت مشكلة في الإجابة عن الأسئلة؟ وربما تساءلت عن أهمية ما تدرسه وجدواه!

لقد صُمّمت الصفحات التالية لتساعدك على أن تفهم كيف يُستعمل هذا الكتاب.

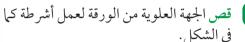
قبل أن تقرأ

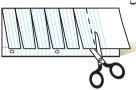
افتتاحية الفصل: يبدأ كل فصل بصورة تشير إلى الموضوعات التي يتناولها، ويليها أنشطة تمهيدية، منها التجربة الاستهلالية التي تهيئ الطالب لمعرفه محتويات الفصل، والمطويات، وهي منظم أفكار يساعد على تنظيم التعلم.

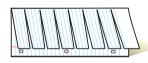
افتتاحية الدرس؛ قُسمت الفصول إلى دروس، كلُّ منها موضوع متكامل يستغرق أكثر من حصة دراسية. في بداية كل درس تحت عنوان « في هذا الدرس» تحدَّد قيمة الدرس من خلال أربعة أقسام: الأهداف التي يتم من خلالها تعرُّف على أهداف التعلم التي يجب أن تحققها عند الانتهاء من هذا الدرس. الأهمية تدلُّنا على الفائدة التي يمكن تحقيقها من دراسة محتوى الدرس. مراجعة المفردات مصطلحات تم تعرُّفها في مراحل سابقة من التعلم؛ أو من خبراتك ومهارتك السابقة. المفردات مصطلحات تحتاج إليها في تعلُّم الدرس لفهم المحتوى. وإذا تصفحت الكتاب ستلاحظ أنه بالإضافة إلى اشتماله على النصوص والصور فإنه يتضمن أيضًا: العلوم عبر المواقع الإلكترونية، وماذا

قرأت؟ وتجارب بسيطة، بالإضافة إلى بعض التطبيقات في مختلف أنواع العلوم. وقد تضمنت الدروس صفحات مستقلة للعلوم الإثرائية. وينبغي التركيز على المفردات التي ظُلّلت واستيعاب معانيها.

المطويات


منظمات الأفكار


مفردات العلوم اعمل المطوية التاليّة لتساعدك على فهم مفردات الفصل ومصطلحاته



اكتب على كل شريط مصطلحًا، أو مفردة علمية من مفردات الفصل.

بناء المفردات: وأنت تقرأ الفصل، اكتب تعريف كل مفردة أو مصطلح في الجهة المقابلة من الورقة.

عندما تقرأ

- العناوين الرئيسة: كُتب عنوان كل درس بأحرف حمراء كبيرة، ثم فُرِّع إلى عناوين كتبت باللون الأزرق، ثم عناوين أصغر باللون الأحمر في بداية بعض الفقرات؛ لكي تساعد على المذاكرة، وتلخيص النقاط الأساسية المتضمَّنة في العناوين الرئيسة والفرعية.
- الهوامش: سوف تجد في هوامش المحتوى مصادر مساعدة كثيرة، منها العلوم عبر المواقع الإلكترونية، ونشاطات الربط والتكامل؛ مما يساعد على استكشاف الموضوعات التي تدرسها. كما أن التجارب البسيطة تعمل على ترسيخ المفاهيم العلمية التي يتم تعلَّمها.
- بناء المهارات: سوف تجد تطبيقات خاصة بالرياضيات والعلوم في كل فصل، مما يتيح لك ممارسة إضافية للمعرفة، وتطوير مهاراتك.
- مصادر تعلم الطالب: تجد في نهاية هذا الكتاب مصادر تعلم تساعد على الدراسة، وتتضمن مهارات العروض الصفية، والجدول الدوري، ومهارات استعمال الحاسوب، ومسردًا للمصطلحات. كما يمكن استعمال المطويات بوصفها مصدرًا من المصادر المساعدة على تنظيم المعلومات ومراجعة المادة قبل الاختبار.
 - في غرفة الصف: تذكر أنه يمكن أن تسأل المعلم توضيح أي شيء غير مفهوم.

في المختبر

يعد العمل في المختبر من أفضل طرائق استيعاب المفاهيم وتطوير المهارات؛ فهو لا يمكّنك فقط من اتباع الخطوات الضرورية للاستمرار في عملية البحث، بل يساعدك أيضًا على الاستكشاف واستثمار وقتك على أكمل وجه. وفيما يلي بعض الإرشادات الخاصة بذلك:

- تربطك كل تجربة وأسئلتها بالحياة؛ لتذكّرك أن العلم يستعمل يوميًّا في كل مكان، لا في غرفة الصف وحدها. وهذا يقود إلى أسئلة تدور حول كيفية حدوث الأشياء في الحياة.
- تذكر أن التجارب لا تعطي دائمًا النتائج التي تتوقعها. وقد كانت بعض اكتشافات العلماء مبنية على البحث دون توقع نتائج مسبقة. وتستطيع تكرار التجربة للتحقق من أن نتائجك صحيحة، أو لتضع فرضية جديدة يمكن اختبارها.
- يمكنك كتابة أي أسئلة في دليل دفتر العلوم قد تبرز في أثناء بحثك. وهذه أفضل طريقة تذكّرك بالحصول على إجابات لهذه الأسئلة لاحقًا.

تضمن الكتاب مجموعة من الطرق لجعل الاختبارات محببة إليك. وسوف يساعدك كتابك أن تكون أكثر نجاحًا في الاختبار عند استعمالك المصادر المعطاة لك.

- راجع جميع المفردات الجديدة، وتأكد أنك فهمت تعريف كل منها.
- راجع الملاحظات التي دونتها ضمن المطويات أو سجلتها مع زملائك داخل الصف أو في المختبر، واكتب أي سؤال أنت في حاجة إلى الإجابة عنه.
 - أجب عن أسئلة المراجعة في نهاية كل درس.
- ادرس المفاهيم الواردة في دليل مراجعة الفصل ، وأجب عن أسئلة مراجعة الفصل . وأسئلة الاختبار المقنن الواردة في نهاية كل وحدة.

ابحث عن:

- الأسئلة الـــواردة ضمن المحتوى. • أسئلة المراجعة في نهاية كل درس.
 - دليل مراجعة الفصل في نهاية كل
 - أسئلة مراجعة الفصل في نهاية كل
 - الاختبار المقنن في نهاية كل وحدة.

الوحدة

طبيعة العلم وتغيرات الأرض

يصعب معرفة ما حدث بدقة عند بداية تكون الأرض قبل ٥،٩ بلايين سنة، ولكن من المؤكد أن نشاطها البركاني كان أكبر من نشاطها الحالي، حيث كانت البراكين تبعث الحمم والرماد، بالإضافة إلى المغازات، ومنها بخار الماء. ويعتقد بعض العلماء أن البراكين دفعت بكميات هائلة من بخار الماء إلى الغلاف الجوي في بداية تكونه. وعندما برد بخار الماء تحول إلى ماء سائل، ما لبث أن هطل على سطح الأرض ليتجمع في المنخفضات، مكونا المحيطات، التي تعد بيئة بحرية للمخلوقات الحية، ومنها الأسماك.

مشاريع 🤺 الــوحــدة

ارجع إلى الموقع الإلكتروني www.obeikaneducation.com أو أي مواقع أخرى للبحث عن فكرة أو موضوع مشروع يمكن أن تنفذه أنت من المشاريع المقترحة:

- التاريخ اعمل خطّا زمنيًّا لبركان ما، واكتب عليه معلومات تتعلق بموقعه وقوته والدمار الذي نجم عنه. مًا أول بركان تم رصده؟ وهل يمكن التنبؤ بالبراكين؟
- المهن ادرس المهارات المتخصصة للمهن المختلفة اللازمة لإعداد وتصميم خطة لمواجهة كارثة طبيعية في مدينة ما.
 - النماذج صمّم واصنع جهازًا لرصد الزلازل، ثم اختبره.

البراكين وحزام النار يمكنك البحث من خلال شبكة الشبكة الإكترونية الإنترنت عن الصفائح الأرضية. صمِّم رسمًا بيانيًا للبراكين الحديثة، واستخدمها في رسم خريطة تبين حزام النار، مع ذكر أسماء بعض البراكين وأعمارها.

الفصل

الفكرة العامة

يوفّر العلم والتقنية المزيد من الصحة والراحة والأمن للناس.

الدرس الأول

أسلوب العلم

الفكرة الرئيسة العلم طريقة منظمة لدراسة الأشياء، والإجابة عن التساؤلات.

الدرس الثاني

عمل العلم

الفكرة الرئيسة يجري العلماء أبحاثًا مختلفة لاكتشاف معلومات جديدة.

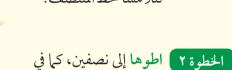
الدرس الثالث

العلم والتقنية والمجتمع

الفكرة الرئيسة تقود الاكتشافات العلمية عادة إلى تقنيات جديدة، ويمكن توظيف هذه التقنيات في الأبحاث العلمية، للتوصل إلى اكتشافات علمية جديدة.

للعلم دورٌ مهم في حياتك؛ فأنت محاط بمنتجات العلم وتطبيقاته، وقد تستخدم المهارات العلمية عند استقصاء العالم من حولك، ويستخدم العلماء في المختبرات الأدوات والمهارات العلمية للإجابة عن الأسئلة، وبأسلوب أو وفق آلية حلّ المشكلات.

دفتر العلوم صف نشاطًا علميًّا قمت به، وحدّد خطوات الطريقة العلمية التي اتبعتها عند تنفيذ هذا النشاط.


نشاطات تمهيدية

المطويات منظمات الأفكار

اعمل المطوية التالية لتساعدك في أثناء قراءتك هذا الفصل على التركيز وفهم طريقة عمل العلماء.

الشكل المقابل.

الخطوة ٣ أدر الورقة رأسيًّا، ثم افتحها وقصها في اتجاه خطوط الطيي الداخلي لعمل أربعة أجزاء.

الخطوة ٤ عنون كلّ جزء كما في الشكل المقابل.

صنّف: اكتب في كل جزء الخصائص

الأربع الرئيسة لأسئلة العلماء في أثناء قراءة الفصل.

القياس باستخدام الأدوات

إن المعلومات التي نحصل عليها من الوسط المحيط بنا بوساطة حواسنا كثيرة جـدًّا، فأنت تدرك أن الحساء ساخن بمجرد لمس الإناء الذي يحتويه، أو مشاهدة الأبخرة المتصاعدة منه. ولكن الحواس لا تجيب بدقة عن كلُّ سؤال. لذا يستخدم العلماء أدوات منها مقياس الحرارة للقياس بدقة. ولتتعلم أكثر عن أهمية استخدام الأدوات أجر التجربة التالية:

- ١. أحضر ثلاثة أوعية، واملا أحدها بماء بارد، والآخر بماء فاتر، والثالث بماء ساخن قليلًا. تحذير؛ تأكد أنّ الماء الساخن لن يؤذيك.
- استخدم مقياس الحرارة لتقيس درجة حرارة الماء الفاتر، وسجلها.
- اغمر إحدى يديك في الماء البارد والأخرى في الماء الساخن مدة دقيقتين.
- ضع يديك معًا في وعاء الماء الفاتر. بم تحس في كل يد؟ سجل ما تحس به في دفتر العلوم.
- التفكير الناقد اكتب فقرة في دفتر العلوم توضّح فيها أهمية استخدام أدوات القياس للحصول على معلومات دقيقة.

لمراجعة محتوى هذا الفصل وأنشطته ارجع إلى الموقع الإلكتروني www.obeikaneducation.com

أتهيأ للقراءة

نظرة عامة

- النص، كي يسهل عليك استيعاب الأفكار والعلاقات التي ترد في النص، اتبع الخطوات التالية:
 - ١. انظر إلى عنوان النص والرسوم التوضيحية الواردة.
 - ٢. اقرأ العناوين الرئيسة والفرعية والكلمات المكتوبة بالخط الداكن.
 - ٣. ألق نظرة سريعة على النص لتعرف كيفية تنظيمه، وتقسيمه إلى أجزاء.
 - انظر إلى الصور والرسوم والأشكال والخرائط، واقرأ العناوين والتفاصيل المرافقة لها.
 - ه. حدد الهدف من دراستك، هل تقرأ لتتعلم مادة علمية جديدة أم للبحث عن معلومات محددة؟
- أَتُدرّب خذوقتًا كافيًا لتصفح محتوى هذا الفصل، ثم اطلّعَ مع زميلك على العناوين الرئيسة والفرعية جميعها، وأجب عن الأسئلة التالية:
 - أي أجزاء الفصل يبدو أكثر إمتاعًا لك؟
 - هل وجدت أي كلمة في العناوين غير مألوفة لديك؟
 - اختر أحد أسئلة المراجعة، وناقشه مع زميلك.

الآن وبعد أن تصفحت الفصل، اكتب فقرة قصيرة تصف فيها شيئًا ترغب في تعلمه.

عند إلقائك نظرة عامة على الفصل تأكد من اطلاعك على كافة الرسومات والجداول.

توجيه القراءة وتركيزها

ركز على الأفكار الرئيسة عند قراءة الفصل باتباعك ما يلي:

- **قبل قراءة الفصل** أجب عن العبارات في ورقة العمل أدناه:
 - اكتب (م) إذا كنت موافقًا على العبارة.
 - اكتب (غ) إذا كنت غير موافق على العبارة.
- **(۱) بعد قراءة الفصل** ارجع إلى هذه الصفحة لترى إذا كنت قد غيّرت رأيك حول أي من هذه العبارات.
 - إذا غيرت إحدى الإجابات فبيّن السبب.
 - صحّح العبارات غير الصحيحة.
 - استرشد بالعبارات الصحيحة والمصححة أثناء دراستك.

بعد القراءة م أوغ	العبارة		قبل القراءة م أوغ
	يسترشد العلماء عادةً بمعرفتهم السابقة لتوقع نتائج تجاربهم.	٠١	
	يفضل معظم العلماء أن تبقى اكتشافاتهم سرية.	٠٢	
	هناك طريقة واحدة فقط للمنهج العلمي في حل المشكلات.	٠٣	
	الملاحظة هي الطريقة الوحيدة التي تؤدي إلى الاكتشافات العلمية.	٤.	
	التجربة المخطط لها بصورة جيدة تحوي متغيرًا واحدًا فقط في كل مرة.	.0	
	يَعُدّ العلماء إعادة التجربة ضياعًا للوقت.	٠٦	
	يُعدّ الشخص عالمًا إذا تخرّج في الجامعة فقط.	٠٧	
	يضمن النظام العالمي للوحدات التواصل الصحيح بين العلماء.	٠٨	
	إذا لم تدعم التجربة الفرضية فلن يستفيد العلماء منها شيئًا.	٠٩.	

أسلوب العلم

في هذا الدرس

الأهداف

- تُحدد كيف تشكّل العلوم جزءًا من حياتك اليومية.
- تصف المهارات والأدوات التي تستخدم في العلوم.

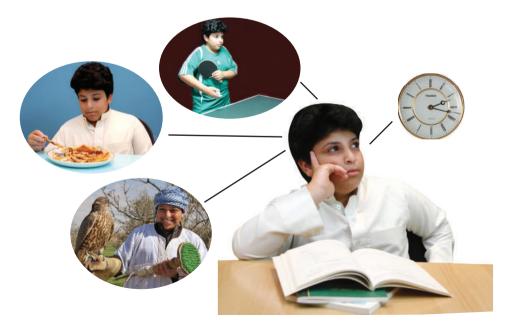
الأهمية

كثيرٌ مما تتعلمه في حصص العلوم قابل للتطبيق في الحياة اليومية.

🤉 مراجعة المفردات

اللاحظة جمع بيانات باستخدام حاسة أو أكثر.

المفردات الجديدة


• العلم • التقنية

العلم في المجتمع

إذا سمعت كلمة "عِلْم" أو "علوم" فهل ينحصر تفكيرك في حصة العلوم والمعلم وبعض المصطلحات والحقائق؟ وهل هناك علاقة بين ما يحدث في حصة العلوم وبين ما يحدث في حياتك اليومية؟ قد تواجه في حياتك مشاكل عليك حلّها، أو أسئلة تحتاج إلى إجابات، كما يبين الشكل ١؛ فالعلم Science طريقة أو عملية تستخدم في استقصاء ما يجري حولك، ويعينك على توفير إجابات لأسئلتك.

العلم ليس جديدًا حاوّل الناس عبر التاريخ تفسير ما يحدث للأشياء حولهم، معتمدين على ملاحظاتهم التي توصلوا إليها عن طريق حواسهم الخمس (البصر واللمس والشم والتذوق والسمع). وقد عرفت من التجربة الاستهلالية أنّ استخدام الحواس فقط قد يؤدي إلى فهم غير دقيق. فمثلاً إن وصفت شيئًا بأنه باردٌ أو ساخن فإنك لم تحدد درجة حرارته، وإن وصفته بأنه ثقيل أو خفيف فأنت لم تحدد مقدار كتلته، وإن وصفته بأنه قريب أو بعيد فأنت لم تحدد مقدار المسافة التي بعدها.

تستخدم الأرقام في وصف الملاحظات، وتُستخدم أدوات ومنها مقياس الحرارة والمساطر المترية لإعطاء قيم رقمية لهذا الوصف؛ حيث يلاحظ العلماء ويستقصون ويجربون؛ للتوصل إلى إجابات، ويمكنك أنت أيضًا أن تقوم بذلك.

الشكل (إنّك تستخدم التفكير العلمي كل يوم لاتخاذ قرارات.

العلم أداة

سمع المعلم حديث الطالبين أحمد وبدر عن واجب التاريخ الجديد، فسألهما: فيمَ تفكران؟ فأجاب أحمد: كُلّفنا بواجب خاص؛ فعلينا إعداد مشروع يوضّح أوجه التشابه والاختلاف بين حَدَثٌ في الماضي وشيء يحدث في مجتمعنا الحاضر.

فقال المعلم: يبدو أنّ هذا المشروع يحتاج إلى جهد كبير. هل اخترتما الحَدثين؟

قال أحمد: لقد قرأنا بعض المقالات في صحف قديمة، ووجدنا عدة قصص حول تفشّي وباء الكوليرا الذي أدّى إلى وفاة عشرة أشخاص وإصابة ٥٠ آخرين بالمرض. انظر الشكل ٢. ولقد حدث ذلك عام ١٨٧١م. ويشبه

هذا المرض تفشى بكتيريا القولون (E.coli) في مدينتنا الآن.

سأل المعلم: ماذا تعرف عن تفشّي وباء الكوليرا؟ وما المشاكل التي نتجت عن بكتيريا القولون يا أحمد؟

قال أحمد: الكوليرا مرض تسببه بكتيريا توجد في الماء الملوث، ويصاب الأشخاص الذين يستخدمون هذا الماء بإسهال شديد، وجفاف قد يؤدي إلى الموت أحيانًا. أمّا بكتيريا القولون E.coli فهي نوع آخر من البكتيريا؛ بعضها غير ضار، وبعضها الآخر قد يسبب مشاكل معوية نتيجة تلوث الغذاء والماء.

أضاف بدر: لقد أصيب عامل في متجر والدي ببكتيريا القولون، وقد تماثل للشفاء الآن. وعلى أي حال نأمل أن تساعدنا على تنفيذ هذا المشروع؛ فنحن نريد أن نقارن بين تتبع العلماء عام ١٨٧١م لمصدر الكوليرا، وكيف تتبعوا مصدر بكتيريا القولون (E.coli) الآن.

استخدام العلم كل يوم

قال المعلم بفخر: أنا سعيد بذلك؛ فهذه طريقة رائعة توضح قيمة العلم، وأنه جزء من حياة كل فرد؛ وإنّكما الآن تسلكان سلوك العلماء.

وبدت على وجه أحمد نظرة حائرة، ثم سأل: ماذا تعني يا أستاذ؟ كيف يمكننا أن نمارس سلوك العلماء؟

الشكل ٢ الصحف والمجلات والكتب والإنترنت جميعها مصادر جيدة للحصول على المعلومات.

العلم في الإعلانات

لا تستطيع أن تمنع جميع الأمراض، ولكنّك تستطيع أن تأخذ بعض الاحتياطات للحدّ من احتمال إصابتك بها. وتدّعي الإعلانات أنّ الصابون المضاد للبكتيريا وموادّ التنظيف الأخرى يمكنها القضاء على هذه المخلوقات الحية، ولكن كيف يتم التأكد من ذلك؟ اقرأ التعليمات الموجودة على تلك المنتجات؛ لمعرفة ما إذا كانت تحوي بيانات تدعم تلك فيما توصلت إليه.

مكافحة المرض

ارجع إلى المواقع الإلكترونية عبر شبكة الإنترنت

للحصول على معلومات عن مكافحة المرض ومراكز مكافحة المرض.

نشاط ابحث في مرضين مختلفين قامت مراكز مكافحة المرض بتتبعهما وتحديدهما في السنوات الخمس الماضية. وأعد ملطقاً يتضمن المعلومات التالية: والعراض والمسببات والعلاج، ومواقع انتشارها.

الشكل ٣ من المهم أن تكتشف جميع المعلومات الأساسية عند حل المشكلة. وهناك مصادر مختلفة يمكن أن توفر مثل هذه المعلومات.

وضّح كيف يمكن أن تجمع معلومات عن موضوع محدّد؟ ما مصادر المعلومات التي قد تستخدمها؟

العلماء يستخدمون الأدلة أكمل المعلم كلامه: إنّك الآن تتصرف بطريقة علمية؛ فلديك مشكلة ينبغي حلّها. ابحث أنت وزميلك عن أدلة توضّح أوجه التشابه وأوجه الاختلاف بين الحدثين. وسوف تستخدم في أثناء تنفيذك هذا المشروع عدة مهارات وأدوات؛ بحثًا عن الأدلة. ثم استطرد المعلم: يفعل العلماء الشيء نفسه في نواح كثيرة؛ ففي عام ١٨٧١م تتبع العلماء دليلًا لمعرفة مصدر وباء الكوليرا لحلّ مشكلتهم. واليوم يفعل العلماء الشيء نفسه؛ وذلك بتتبع بكتيريا القولون E.coli والبحث عن مصدرها.

استخدام المعرفة السابقة

سأل المعلم: كيف تعرف يا أحمد ما تحتاج إليه لإتمام مشروعك؟

فكر أحمد قليلاً، ثم قال: لقد ذكر معلم التاريخ الأستاذ حمد أنه يجب أن يكون التقرير في ثلاث صفحات على الأقل، وأن يتضمن خرائط أو صورًا أو رسومًا بيانية. كما يجب أن نستخدم معلومات من مصادر مختلفة، منها المقالات المكتوبة أو الرسائل أو أشرطة الفيديو أو الإنترنت. واعلمُ أيضًا أنه ينبغي أن يُسلَّم التقرير في الوقت المحدد، مع الأخذ بعين الاعتبار صحة الإملاء والقواعد، انظر الشكل ٣.

سأل المعلم: هل تحدث المعلم حمد فعلاً عن الإملاء الصحيح والقواعد؟ فأجاب بدر: لا، لم يقل ذلك صراحة، لكنّنا نعلم أن المعلم حمدًا يخصم بعض الدرجات بسبب أخطاء الإملاء والقواعد، وهذا ما لاحظته عندما ارتكبت بعض الأخطاء الإملائية في تقريري السابق، فخصم درجتين.

تعجب المعلم طلال وقال: حسنًا؛ فهذا يتفق مع المنهج العلمي. عرفت إذن من خبرتك السابقة أنّك إذا لم تتبع تعليمات المعلم حمد فسوف تفقد بعض الدرجات. ويمكنك أيضًا أن تتوقع أنّه سيتصرف بالطريقة نفسها مع التقرير الذي ستعده كما فعل من قبل.

أكمل المعلم حديثه قائلاً: يستفيد العلماء أيضًا من الخبرات السابقة ليتوقعوا ما يحدث في أثناء الاستقصاءات، وبذلك يضعون النظريات بعد اختبار التوقعات جيدًا. والنظرية تفسير للأشياء، مدعوم بالحقائق. كما يضعون القوانين، وهي قواعد تصف نمطًا في الطبيعة، ومن أمثلة ذلك قوانين الجاذبية.

استخدام العلم والتقنية

بدر، لقد أشرت في حديثك إلى أنّك تريد أن تقارن بين طرائق تتبع المرَضَين. وهذا يتطلب استخدام مهارات وأدوات كالتي يستخدمها العلماء؛ حتى تكتشف أوجه التشابه وأوجه الاختلاف بين هذين المرضين. ثم أشار المعلم إلى أحمد قائلاً: إنَّك تحتاج إلى مصادر متنوعة للحصول على المعلومات، فكيف تتعرف المصادر المفيدة؟ فأجاب أحمد: نستطيع أن نستخدم الحاسوب لتصفح المواقع

الإلكترونية الموثوقة وكذلك قراءة الكتب والمجلات والصحف ومشاهدة الأفلام العلمية التي تحتوى على المعلومات التي نريدها. فقال المعلم: أحسنت؟ هذه طريقة أخرى تفكر فيها كالعلماء؛ فالحاسوب من الأدوات التي يستخدمها العلماء الآن ليجدوا البيانات ويحلُّلوها. فالحاسوب مثال على التقنية، انظر الشكل ٤. والتقنية Technology تطبيق العلم لصناعة منتجات، أو أدوات يمكن أن يستخدمها الناس. وأحد الاختلافات الكبيرة التي ستجدها بين الطريقة التي تم فيها تتبع الأمراض عام ١٨٧١م وطريقة تتبعها في العصر الحالي، هو نتاج التقنية

مهارات العلم أكمل المعلم حديثه قائلاً: ربما تكون بعض المهارات المستخدمة في تتبع المرضين هي أحد أوجه التشابه بين الفترتين الزمنيتين. فمثلاً يستخدم الأطباء والعلماء في هذه الأيام مهارات، منها: الملاحظة، والتصنيف، وتفسير البيانات، كما استخدمها العلماء في أواخر عام ١٨٧١م. وفي الواقع، عليك مراجعة مهارات العلم التي تحدثنا عنها في الصف. وبهذه الطريقة تتمكن من تحديد كيف استُخدمت أثناء تتبع مرض الكوليرا، وكيف أنها لا تزال تستخدم حتى اليوم.

بدأ أحمد وبدر يراجعان مهارات العلم التي ذكرها المعلم. هـذه المهارات يتم استيعابها واتقانها من خلال الممارسة. فكلّما مارسْتَ هذه المهارات أكثر

الشكل ٤ الحاسوب أحد الأمثلة على التقنية. وغالبًا ما توقر المكتبات والمدارس الحواسيب للطلاب لإجراء البحوث والطباعة.

الطريقة العلمية ارجع إلى كراسة التجارب العملية

تجربة عملية

الاستنتاج من الصور

الخطوات

- ١. انظر إلى الصورتين في أسفل الصفحة، ثم اكتب ملاحظاتك في دفتر العلوم.
- ٢. سجل استنتاجاتك التي حصلت عليها في ضوء ملاحظاتك.
- ٣. اعرض استنتاجاتك على زملائك في الصف.

- ١. حلَّل استنتاجاتك. هل هناك توضيحات أخرى لملاحظاتك؟
- ٢. ما أهمية أن تكون حذرًا ودقيقًا في الاستنتاج؟

الملاحظة والقياس استخدمت في التجربة الاستهلالية في بداية الفصل ثلاث مهارات، هي: الملاحظة، والقياس، والمقارنة؛ تمامًا كالعلماء الذين يستخدمون هذه المهارات أكثر من غيرهم. وستتعلم أنّ الملاحظة وحدها غير كافية أحيانًا لإعطاء صورة كاملة عما يحدث. ولضمان أن تكون البيانات التي حصلت عليها مفيدة يجب أخذ قياسات صحيحة، فضلاً عن أنّه ينبغي جمع الملاحظات بعناية. يريد أحمد وبدر أن يجدا أوجه التشابه والاختلاف بين التقنيات التي استخدمت لتتبع المرض في أواخر عام ١٨٠٠م، والمستخدمة الآن، لذا فإنّهما يستخدمان مهارة المقارنة. فالمقارنة هي إيجاد أوجه التشابه وأوجه الاختلاف.

ماذا قرأت؟ ما المهارات الثلاث الأكثر استخدامًا في العلوم؟

التواصل في العلم

الشكل ٥ تمكِّن المؤلفاتُ العلمية العلماءَ من اكتساب المعرفة المتعلقة بالبحوث الحديثة. وتُقدم أوراق البحث إلى المجلات، ويراجعها علماء آخرون قبل نشرها.

وضّح لماذا يُراجع علماء آخرون أوراق البحوث قبل نشرها؟

ماذا يفعل العلماء بنتائج تجاربهم؟ لن تكون نتائج ملاحظاتهم وتجاربهم واستقصاءاتهم متاحة لسائر العالم، ما لم ينقلوها إليهم. لذا يستخدم العلماء عدة طرائق لإيصال ملاحظاتهم إلى الآخرين. وغالبًا ما توثق نتائج التجارب والاستنتاجات في المجلات العلمية التي تُنشر دوريًا، ويوضّح الشكل • بعض تلك المؤلفات. يقضي العلماء جزءًا كبيرًا من وقتهم في قراءة المقالات التي تتضمنها هذه المجلات، وأحيانًا يكتشف العلماء معلومات في هذه المقالات قد تؤدي إلى تجارب جديدة.

دفتر العلوم الاحتفاظ بدفتر العلوم طريقة أخرى للتواصل بالبيانات العلمية والنتائج؛ حيث يمكن أن تُسجل الملاحظات وخطط الاستقصاءات، بالإضافة إلى الخطوات المتبعة في تنفيذ الاستقصاءات. كما ينبغي تضمين الموادّ والأدوات والمخططات التي توضّح كيفية تركيب الأجهزة جنبًا إلى جنب مع

نتائج الاستقصاء في دفتر العلوم. وعليك أيضًا أن تُسجل العمليات الحسابية، أو الصيغ التي استخدمت لتحليل البيانات، وتدوّن المشاكل التي حدثت، والأسئلة التي تطرح حولها، فضلاً عن أي حلول ممكنة لها، وأن تلخص البيانات في صورة جداول أو رسوم بيانية، أو في صورة فقرة. وتذكّر دائمًا أن تستخدم قواعد اللغة الصحيحة في دفتر العلوم.

ين، لال كثر

الطرائق المتعادي عند المن المن المنافعة المن

ستستخدم هذا الدفتر في حصص العلوم، ليساعدك على التواصل مع الآخرين، بعرض ملاحظاتك وأسئلتك وأفكارك عليهم، انظر الشكل ٦. ومن خلال دراستك في هذا الكتاب، سوف تمارس الكثير من مهارات العلم، وتصبح أكثر قدرة على تعرّف المشاكل وتحديدها، وستتعلم كيف تخطط للاستقصاءات والتجارب التي قد تحل هذه المشاكل.

الشكل ٦ استخدم دفتر العلوم لتدوّن ما تكتشفه أو تنقله من رسوم بيانية وجداول ورسوم توضيحية.

مراجعة الكال

اختبر نفسك

- استنتج لماذا يستخدم العلماء أدوات منها مقياس الحرارة والمسطرة المترية عند أخذ الملاحظات؟
- حدد بعض المهارات المستخدمة في العلوم. سمّ مهارة علمية استخدمتها اليوم.
- ٣. قوم اذكر مثالاً واحدًا على التقنية. فيم تختلف التقنية عن العلم؟
- التفكيرالناقد لماذا يُستخدم دفتر العلوم في تسجيل البيانات؟ ما الطرائق الثلاث المختلفة التي تسجل أو تلخص بها البيانات في دفتر العلوم؟

تطبيق المهارات

- •. قارن تستخدم أحيانًا حواسك لملاحظة أشياء حولك؛ لتتوصل إلى إجابة عن سؤال ما، وأحيانًا أخرى تستخدم أدوات وقياسات. قارن بين هاتين الطريقتين في الإجابة عن الأسئلة العلميّة.
- 7. **تواصل** سجّل في دفتر العلوم خمسة أشياء قمت بملاحظتها في غرفة صفك أو خارجها.

الخلاصة

العلم في المجتمع

- يستعمل الناس حواسهم ليلاحظوا ما يحيط بهم.
 - تُستخدم العمليات العلمية في حل المشكلات والإجابة عن الأسئلة.

استخدام المعرفة السابقة

- يستعين العلماء بالمعارف السابقة لتوقع نتائج الاستقصاءات.
- توضع النظريات بعد اختبار الفرضيات عدة مرات. استخدام العلم والتقنية
 - المجلات والصحف والكتب والإنترنت مصادر لمعلومات مفيدة.
 - الملاحظة والتصنيف والتفسير مهارات علمية مهمة.

التواصل في العلم

 يتواصل العلماء بملاحظاتهم وتجاربهم ونتائجهم مع الآخرين.

عمل العلم

في هذا الدرس

الأهداف

- تختبر خطوات حل مشكلة ما بطريقة علمية.
- توضّح كيفية بناء الاستقصاء المصمّم جيدًا.

الأهمية

تُساعدك الطرائق العلميّـة والتجارب المدروسة بعناية على حلّ المشكلات.

🗣 مراجعة الهفردات

التجربة مجموعة من الخطوات المنظمة يقود تنفيذها إلى اكتشاف أو اختبار أو إثبات شيء ما.

المفردات الجديدة

- البحث الوصفي
- البحث التجريبي
- الطرائق العلمية
 - النموذج
 - الفرضية
 - المتغير المستقل
 - المتغير التابع
 - الثابت
- العينة الضابطة

الشكل ٧ يوضّح هذا الملصق إحدى الطرائق العلمية لحلّ المشكلات.

حل المشكلات

عندما أنجز أحمد وبدر بحثهما أجابا عن السؤال المطروح، إلا أنَّ هناك أكثر من طريقة للإجابة عن السؤال. أو حل المشكلة العلمية. يبذل العلماء جهودًا لحلّ المشكلات العلمية، وكل مشكلة تتطلب استقصاءً بصورة مختلفة، إلا أنهم يكررون بعض الخطوات في الاستقصاءات جميعها.

تحديد المشكلة بعد الشعور بوجود مشكلة، يركز العلماء على فهمها بوضوح أولاً قبل حلها. وقد يجدون أحيانًا أنه من السهل تحديد المشكلة، وقد يكون هناك عدة مشكلات تحتاج إلى حلول أحيانًا أخرى. فعلى سبيل المثال، قبل أن يجد العالم مصدر المرض عليه أن يحدّد المرض بدقة.

كيف يمكن حلّ المشكلة؟ يتبع العلماء طرائق مختلفة لحلّ المشكلات، والإجابة عن الأسئلة العلمية. وتندرج هذه الطرائق في قسمين أساسيين، هما: البحث الوصفي، والبحث التجريبي. البحث الوصفي Descriptive research الذي يجيب عن الأسئلة العلمية من خلال الملاحظة. فالمعلومات التي جمعها أحمد وبدر حول الكوليرا وبكتيريا القولون تعد بحثًا وصفيًّا. أمّا البحث التجريبي

Experimental research فهو يجيب عن الأسئلة العلمية من يجيب عن الأسئلة العلمية من خلال اختبار الفرضية، باتباع خطوات متسلسلة ومنظمة بشكل صحيح. والطرائق العلمية Scientific methods، هي طرائق أو خطوات تُتبع لمحاولة حل المشكلات؛ إذ تتطلب المشكلات المختلفة طرائق علمية مختلفة لحلها.

البحث الوصفى

يمكن حلّ بعض المشكلات العلمية أو الإجابة عن الأسئلة من خلال البحث الوصفي، الذي يعتمد غالبًا على الملاحظات. فماذا يمكن أن تلاحظ في الشكل ٨؟ يُستخدم البحث الوصفي في الاستقصاءات التي يصعب فيها إجراء التجارب. ومن ذلك تتبُّع الطبيب البريطاني جون سنو عام ١٨٠٠م مصدر وباء الكوليرا باستخدام البحث الوصفي، الذي يشتمل عادةً على الخطوات التالية:

تحديد هدف البحث هدف البحث هو ما تريد أن تكتشفه، أو السؤال الذي ترغب في الإجابة عنه. فقد كان هدف

أحمد وبدر في بحثهما اكتشاف كيف تم تتبع مصدر كل من وباء الكوليرا وبكتيريا القولون (E.coli). وحدّد الدكتور جون سنو هدفه، وهو اكتشاف مصدر وباء الكوليرا في لندن.

الشكل ٨ يمكن وصف الأشياء بالكلمات والأرقام.

صف الأشياء الظاهرة في الصورة بالكلمات والأرقام.

تطبيق العلوم

مهارة حل المشكلة

استخلاص النتائج من جدول البيانات

تُستخدم غالبًا جداول البيانات لتسجيل المعلومات في أثناء الاستقصاء. ويمكن تقويم البيانات لمعرفة إن كانت تدعم التوقع أم لا، ثم تُستخلص النتائج. قامت مجموعة طلاب باستقصاء عدد السكان في بعض مدن المملكة العربية السعودية، وتوقعوا أنّ المدينة التي عدد سكانها أكثر تكون مساحتها أكبر، فهل لديك توقع آخر؟ سجّل توقعك في دفتر العلوم قبل أن تكمل الاستقصاء.

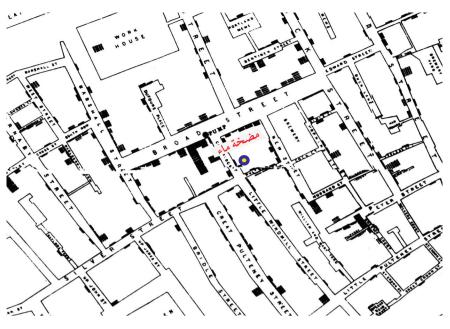
تحديد المشكلة

يوضّح الجدول المقابل نتائج بحث الطلاب، وهي عبارة عن بيانات تتعلق بعدد السكان في بعض المدن في المملكة العربية السعودية ومساحة كل منها.

مساحة بعض المدن في السعودية وعدد سكانها				
المساحة (كم)	عدد السكان	المدينة		
۰۵۰ کم	1,770,871	مكة المكرمة		
۸۹ه کم	١,١٨٠,٧٧٠	المدينة المنورة		
۱۷۹۸ کم	0,70£,07•	الرياض		
۱۵۰۰ کم	٣,٤٥٦,٢٥٩	جدة		
۸۰۰ کم	9.7,097	الدمام		

المصدر: مصلحة الاحصاءات العامة والمعلومات في المملكة العربية السعودية

- . هل تدعم البيانات التي في الجدول توقعك؟ وإذا لم تدعم بياناتُك توقعَك فضع توقعًا جديدًا.
- . ما البحث الآخر الذي يمكن أن تقوم به لدعم توقعك، أو لتعديله إن لم يكن صحيحًا؟



الشكل ٩ تُظهر كل علامة على خريطة الدكتور سنو أماكن سكن المرضى المصابين بالكوليرا. افترضَ الدكتور أنّ هناك علاقة بين إزالة مضخات المياه وانتهاء وباء الكوليرا.

المحافظة على مصادر المياه

صدر في المملكة العربية السعودية وبمرسوم ملكي رقم (م/ ٣٤) وبتاريخ ١٤٠٠/٨/٢٤هـ وبتاريخ عكام/ ١٤٠٠هـ مصادر المياه والجهة التي تتولى المحافظة عليها، واختصاصاتها في هذا الشأن، والأولوية في الإفادة تتعلق بقانون محلي أو دولي يهتم بنوعية الماء أو المحافظة على البيئة والموارد الطبيعية، وشارك زملاءك في الصف في النتائج التي توصلت

أماكن سكن المرضى المصابين بالكوليرا

وصف تصميم البحث كيف تنفذ استقصاءك؟ وما الخطوات التي ستتبعها؟ وكيف تسجل بياناتك أو تحلّلها؟ وكيف يساعدك تصميم البحث على إيجاد إجابة عن سؤالك؟ هذه بعض الأسئلة التي يفكر فيها العلماء عندما يصممون استقصاءً بطريقة البحث الوصفي. وتعدّ احتياطات السلامة أهم جزء في تصميم أيّ بحث. لذا راجع معلمك عدة مرات قبل أن تبدأ أي استقصاء.

ما الأسئلة التي يجب أن تفكر فيها عندما تخطط للاستقصاء؟

لقد ضمّن الدكتور جون سنو بحثه خريطة توضّح أماكن سكن المرضى المصابين بالكوليرا، وأماكن حصولهم على الماء. واستخدم هذه البيانات في توقّع أنّ المياه التي مصدرها المضخة اليدوية الموجودة في الشارع -كما في الشكل ٩- كانت مصدر التلوث.

الموضوعية عندما يتوقع العلماء نتائج معينة قبل إجراء الاستقصاء، يعدّ هذا تحيزًا؛ فالاستقصاء الجيد يتفادى التحيز. ومن طرائق تفادي التحيز تحويل جميع البيانات إلى قياسات رقميّة. ويمكن أن يحدث نوع آخر من التحيز، كما في المسوحات، أو في اختيار المجموعات لجمع المعلومات والبيانات. ولكي تحصل على نتيجة دقيقة عليك استخدام عينة عشوائية.

الأجهزة والمواد والنماذج

تعدّ الأجهزة والموادّ المستخدمة في تنفيذ الاستقصاء وتحليل البيانات من الأمور المهمة لحلّ المشكلة العلمية عن طريق البحث الوصفي.

اختيار المواد والأجهزة عندما تنفذ الاستقصاء وتجمع البيانات عليك أن تختار أحدث المواد المتوافرة لديك، ويفضل أن تستخدم الأجهزة العلمية، ومنها الميزان ذو الكفتين، والموازين ذات النوابض، والمجاهر، وغيرها. وتساعد الآلات الحاسبة والحواسيب على عرض البيانات وإجراء الحسابات عليها، وليس من الضروري عند القيام بالاستقصاءات العلمية أن يتوافر لديك الأجهزة والمواد المطورة جدًّا، أو أن تكون باهظة الثمن؛ إذ يمكن أن تكمل استقصاءك وتعرض بياناتك بنجاح باستخدام ما يتوافر من مواد في البيت أو في الصف، ومنها الأوراق وأقلام التلوين أو

أقلام التخطيط. فعرض البيانات المنظّم - كما في الشكل ١٠ - يعدّ فعالاً كما لو تم عرضها من خلال الرسوم البيانية المعالجة بالحاسوب، أو العروض باهظة الثمن.

استخدامها. والنموذج Model يمثّل أشياء تحدث ببطء شديد، أو بسرعة كبيرة، وقد يمثل أشياء كبيرة جدًّا، أو صغيرة جدًّا يصعب ملاحظتها بصورة مباشرة. وقد يمثل أشياء كبيرة جدًّا، أو صغيرة جدًّا يصعب ملاحظتها بصورة مباشرة وتكون النماذج مفيدة أيضًا في الحالات التي تكون فيها الملاحظة المباشرة خطرة جدًّا، أو عالية التكلفة. لقد كانت خريطة الدكتور سنو للكوليرا نموذجًا ساعده على توقّع المصادر الممكنة للإصابة بالكوليرا. ويستخدم الناس حاليًّا النماذج التي يمكن تنفيذها باستخدام الحاسوب في كثير من المهن. كما تعد الرسوم البيانية والجداول العادية والإلكترونية نماذج تستخدم في عرض البيانات. ولقد ساعدت الحواسيب على إعداد نماذج متطورة ودقيقة؛ فيمكن بواسطتها الحصول على نماذج ثلاثية الأبعاد للعديد من المجسمات كالبكتيريا المجهرية، أو نيزك ضخم أو بركان ثائر، كما تستخدم الحواسيب في تصميم نماذج الطائرات الآمنة والمباني وعمل نماذج لها. وتوفر هذه النماذج الوقت والمال، من خلال اختبار الأفكار، التي قد تكون بسيطة جدًّا، أو كبيرة ومعقدة، أو قد تستغرق وقتًا طويلاً في بنائها.

الشكل ١٠ هذا العرض التقديمي منظم ومتقن، ويبين بوضوح تصميم التجربة والبيانات.

اعمل قائمة بمزايا هذا العرض تسهّل قراءته واستيعابه.

استخدام الطريقة العلمية الجربة عملية الجارب العملية

الجِدول ١ النظام العالمي (SI) لوحدات القياس				
يساوي	الرمز	الوحدة	القياس	
۱۰۰۰/۱) م	ملم	۱ مللمتر	الطول	
۱۰۰/۱) م	سم	۱ سنتمتر		
۱۰۰ سم	م	۱ متر		
۱۰۰۰م	کم	۱ کیلومتر		
۰٫۰۰۱ لتر	مل	۱ مللتر	حجم السائل	
۱۰۰۰ مل	لتر	المتر		
۰,۰۰۱ جم	ملجم	۱ ملجرام	الكتلة	
۱۰۰۰ ملجم	جم	١جرام		
۱۰۰۰ جم	كجم	اكيلوجرام		
۱۰۰۰کجم=۱طن	طن	۱ طن		

القياسات العلمية يستخدم العلماء لجمع الملاحظات في جميع أنحاء العالم نظامًا للقياس يسمى النظام العالمي للوحدات (SI) International System of Units (SI)، يسهّل فهم نتائج البحوث ومقارنة بعضها ببعض. انظر إلى الجدول ١ الذي يوضّح معظم الوحدات التي ستستخدمها في دراستك للعلوم. يوضّح الشكل ١١ بعض الأدوات التي يمكن استخدامها في القياس حسب النظام العالمي لوحدات القياس.

الشكل ١١ بعض الأدوات التي يستخدمها العلماء. فيُستخدم المخبار المدرّج لقياس حجم السائل، و يُستخدم الميزان لقياس الكتلة، بينما يستخدم مقياس الحرارة لقياس درجة الحرارة.

الجدول ٢: تساعدك جداول البيانات على تنظيم ملاحظاتك ونتائجك.

قدرة أوراق التنشيف على امتصاص الماء (قطرات الماء/ ورقة)				
النوعج	النوع ب	الثوع أ	رقم	
, تنوع ج	,تيج ب	، يموج ،	المحاولة	
			١	
			۲	
			٣	
			٤	

البيانات

يجب أن تُجمع البيانات في البحوث العلمية، وتنظم بصورة صحيحة؛ فالتنظيم الجيد للبيانات يسهل عمليتي التفسير والتحليل.

تصميم جدول البيانات يشتمل الاستقصاء المخطّط له جيدًا على طرائق تسجيل النتائج والملاحظات بصورة صحيحة. ومن هذه الطرائق جداول البيانات، كما في الجدول ٢. ولكل جدول عنوان يعبر عن مضمونه. ويُقسم هذا الجدول إلى مجموعة من الأعمدة والصفوف التي تمثّل عادةً المحاولات أو الخصائص المراد المقارنة بينها؛ إذ يحتوي الصف الأول على عناوين الأعمدة ويحدّد العمود الأول ما يمثله كلّ صف لخاصية ما. وعند إكمال جدول البيانات تتوافر لديك معلومات لتحليل نتائج الاستقصاء بصورة صحيحة. ومن الأفضل أن تنشئ جميع جداول البيانات الضرورية للتجربة قبل البدء في تنفيذها. وبهذه الطريقة تهيئ المكان الذي تسجل فيه بياناتك عند الحصول عليها.

تحليل البيانات بعد الانتهاء من تنفيذ الاستقصاء عليك الآن أن تعرف ماذا تعني نتائجك؟ ولمعرفة ذلك ينبغي مراجعة جميع الملاحظات والقياسات التي سجلتها، وأن تكون بياناتك منظمة جيدًا لتحليلها. ولأنّ الرسوم البيانية على اختلاف أنواعها تعد من أفضل الطرائق لتنظيم البيانات فإنه يمكنك أن تُمثّل

هذه البيانات بالرسوم البيانية، كما يظهر في الشكل ١٢، كما يمكنك الاستعانة بالحاسوب في رسمها.

الشكل ۱۲ يمكن أن تساعدك الرسوم البيانية على تنظيم بياناتك وتحليلها.

مقارنــة بـيـن أنــواع مختلفة مــن

الخطه ات سر

أوراق التنشيف

- ارسم في دفتر العلوم جدول بيانات كما في الجدول ٢.
- ٢. قُص قطعًا مربعة الشكل
 ٥ سم × ٥ سم من ثلاثة أنواع
 مختلفة من أوراق التنشيف، ثمضع
 كل قطعة على سطح أملس مستولا
 ينفذ منه الماء.
- أضف قطرة واحدة من الماء إلى
 كل قطعة.
- واصل إضافة قطرات الماء حتى تتشبع قطعة الورق وتصبح غير قادرة على امتصاص الماء.
- ه. سجّل نتائجك في جدول البيانات ومثلها برسم بياني.
- كرر الخطوات من ٢ إلى ٥، ثلاث مرات.

التحليل

- ١. هل امتصت قطع أوراق التنشيف
 كميات متساوية من الماء؟
- إذا امتص أحد أنواع أوراق التنشيف ماء أكثر من غيره فهل يمكن أن تستنتج أنّ هذا النوع هو الذي يجب شراؤه؟ وضّح إجابتك.
- ٣. أيّ الطرائق العلمية استخدمت للمقارنة بين أوراق التنشيف في قدرتها على الامتصاص؟

الشكل ١٣ يُعَدّ التواصل بنتائج التجارب جزءًا مهمًّا من الخبرات المختبرية.

استخلاص النتائج

بعد أن تنظم بياناتك ابدأ باستخلاص النتيجة، آخذًا في الاعتبار الأسئلة الآتية: هل ساعدتك هذه البيانات على الإجابة عن سؤالك؟ هل دعمت بياناتُك توقعاتك فاحتفظ بها، وتذكر أنّ بيانات العلماء إذا لم تفدهم في مجالٍ ما فسوف يستخدمونها في مجال آخر. فمشلاً يقضي العلماء عدة سنوات في البحث عن مضاد حيوي يقتل بكتيريا معينة لاكتشاف أيّ المضادات الحيوية تؤثر فيها، وأيّها لا تؤثر، فيتوصل العلماء إلى بعض المعلومات الجديدة في كلّ مرة يجدون فيها مضادًا حيويًا لا تأثير له، فيستخدمون هذه المعلومات في إنتاج مضادات حيوية أخرى، قد يكون لها مفعول جيد. فالاستقصاء الناجح ليس دائمًا هو الاستقصاء الذي يتم بالطريقة التي تتوقعها.

تواصل العلماء يبدأ الاستقصاء بسبب وجود مشكلة تحتاج إلى حلّ. وينتهي الاستقصاء بتحليل البيانات واستخلاص النتائج. لكن العلماء لا يتوقفون عند هذا الحدّ، بل يتواصلون مع علماء آخرين أو وكالات دولية، أو مصانع خاصة أو عامة، وينقلون إليهم النتائج، بكتابة التقارير، وتقديم عروض توفر تفاصيل حول كيفية إجراء التجارب، فضلاً عن تلخيص البيانات والاستنتاجات النهائية. وقد تشتمل تقاريرهم على توصيات لأبحاث مستقبلية. ويقوم العلماء عادة بنشر معظم اكتشافاتهم المهمة.

في أثناء دراستك للعلوم ستتاح لك فرصٌ لتتواصل ببياناتك ونتائجك مع زملاء صفك، كما يتواصل العلماء باكتشافاتهم، انظر إلى الشكل ١٣؛ إذ يمكنك أن تقدم عرضًا شفويًّا، أو تعمل ملصقًا، أو تعرض نتائجك على لوحة للعرض، أو تحضر رسومًا بيانية على جهاز الحاسوب، أو تتحدث مع طلاب آخرين، أو مع معلمك. شارك المجموعات الأخرى، واعرض عليهم الرسوم البيانية، والجداول التي توضح بياناتك. قد يكون لدى معلمك، أو لدى الطلاب الآخرين أسئلة حول استقصائك، أو استتاجاتك ستتمكّن من الإجابة عنها عبر تنظيم البيانات، وتحليلها بشكل صحيح. يُعدّ كل من تحليل البيانات وعرضها على الآخرين جزءًا مهمًّا في البحوث الوصفية والتجريبية، كما في الشكل ١٤.

البحث الوصفي والبحث التجريبي

الشكل ١٤

يتبع العلماء عدة خطوات لحلّ المشكلات العلميّة؛ فيقومون حسب نوع المشكلة بالبحث الوصفي أو البحث التجريبي بظروف مضبوطة. توضّح الصور التالية خطوات البحث التي يتم تنفيذها لتحديد مواصفات المياه الناتجة عن معالجة المياه العادمة في إحدى محطات تنقية المياه.

ب يمكن بالتجريب الإجابة عن بعض الأسئلة. فهذا العالم يجمع عينة من المياه العادمة؛ ليتم فحصها ضمن ظروف مضبوطة في المختبر.

ت يساعد البحث الوصفي على الإجابة عن بعض الأسئلة. وهنا يسجل العلماء ملاحظاتهم حول مظهر عينة الماء.

د يجب تحليل البيانات بدقة بعد استكمال التجارب والملاحظات. يستخدم فني المختبر الحاسوبَ وأجهزةً أخرى لتحليل البيانات.

البحث التجريبي

التجريب عمل أساس في العلوم، والبحوث التي تعتمد على التجريب تساعد على الإجابة عن أسئلة علمية، من خلال ملاحظة لحالات قابلة للتحكّم فيها وضبطها. ويشتمل تصميم البحث التجريبي على عدة خطوات، هي:

كون فرضية الفرضية المعرفة السابقة والمعلومة الجديدة وأي ملاحظات ضرورية.

المتغيرات يتم التعامل مع المتغيرات في التجارب المخطّط لها بصورة جيدة بتغيير عامل (أو متغير)

واحد كل مرة، وهذا يعني أنّ المتغير مضبوط أو يمكن التحكم فيه. ويُسمّى هذا المتغير الله التجربة المتغير المستقل Independent variable. والمتغير المستقل في التجربة الموضحة أدناه هو كمية المضاد الحيوي أو نوعه الذي تم إضافته إلى البكتيريا. أمّا المتغير التابع Dependent variable ، فهو العامل الذي يتم قياسه، وهو نمو البكتيريا، كما هو موضّح في الشكل ١٥.

لتختبر أيّ المضادين الحيويين يقتل البكتيريا تأكد أنّ كل العوامل ثابتة، ما عدا نوع المضاد الحيوي. وتسمّى المتغيرات التي تبقى ثابتة دون أن تتغير الثوابت Constants. فمثلاً لا يمكنك أن تجري التجربة في درجات حرارة مختلفة، أو في فترات زمنية مختلفة، أو بكميات مختلفة من المضادات الحيوية، فجميع هذه العوامل قد تؤثر في نتائج التجربة، لذا يجب التحكم فيها.

الشكل ١٥ في هذه التجربة اختُبر أثر مضادين حيويين في نمو البكتيريا. المتغير المستقل هو نوع المضاد الحيوي.

استخلص نتائج تتعلق بأثر المضادات الحيوية في البكتيريا، اعتمادًا على هذه الصور.

تظهر هنا نتائج التجربة. جميع العوامل كانت ثابتة ما عدا نوع المضاد الحيوي الذي أضيف.

أضيف في بداية التجربة مضادان حيويان مختلفان إلى الطبقين (أ) و (ب) المحتويين على البكتيريا. ولم يُضف أيّ مضاد حيوي إلى طبق العينة الضابطة.

الشكل ١٦ راجع معلمك في خطة التجربة أكثر من مرة. وضِّح لماذا يجب أن تراجع معلمك أكثر من مرة؟

حدّد العينة الضابطة لن تكون تجربتك صحيحة ما لم تستخدم عينة ضابطة. العينة الضابطة Control هي عينة تُعامل مثل باقي المجموعات التجريبية، ولا تتعرض لأثر المتغير المستقل لكي تُقارن نتائجها بنتائج تلك العينات التي تعرضت لأثر المتغير المستقل. فالعينة الضابطة في تجربة المضاد الحيوي هي عينة البكتيريا التي لم يُضَفْ إليها أي مضاد حيوي، وتوضّح كيف تنمو البكتيريا عندما لا يضاف إليها أيّ مضاد من المضادات الحيوية.

✓ ماذا قرأت؟ ما العينة الضابطة؟

لقد كوّنت فرضية وخطّطت للتجربة، ولكن قبل أن تبدأ في تنفيذها قدّم نسخة من خطتك لمعلمك ليوافق على خطتك وعلى المواد اللازمة لتنفيذها، كما يوضّح الشكل ١٦٠. كما أنّ هذه الطريقة جيدة لتعرف المشاكل في الخطة المقترحة، التي قد تتعلق بأمور الأمن والسلامة، والزمن اللازم لإتمام التجربة، وتوفير الموادّ والأدوات وتكاليفها. وعندما تبدأ تنفيذ التجربة تأكد من تنفيذها كما خططت لها، فلا تحذف أو تغير أيًا من خطوات العمل في منتصف التجربة. وإذا فعلت ذلك فعليك أن تبدأ من جديد. كما يجب أن تدوّن ملاحظات، وتكمل جداول البيانات بصورة مناسبة وفي الوقت المناسب؛ فالملاحظات غير المكتملة تؤدي إلى صعوبة تحليل البيانات، ممّا يجعل الاستنتاجات غير صحيحة.

عدد المحاولات لن تكون نتائج التجارب التي تُجرَى بالطريقة نفسها متماثلة دائمًا. لتتأكد من صحة نتائجك عليك أن تَجرِي تجربتك عدّة مرات. وقد تُظهر إعادة المحاولات أنَّ النتائج غير طبيعية، ومن غير الممكن أن تقبل بوصفها نتيجة صحيحة. فمثلًا، إذا أضيفت مادة أخرى بالخطأ إلى أحد الأوعية التي تحوي

مضادًا حيويًّا فقد تقتل هذه المادة البكتيريا. فبدون نتائج المحاولات الأخرى التي تستخدمها في المقارنة قد تتوقع أنّ المضاد الحيوي هو الذي قتل البكتيريا. وكلما أكثرت من عدد المحاولات مستخدمًا الخطوات نفسها ستكون نتائجك أكثر دقة وسلامة. ويعتمد عدد المحاولات التي تقرّر القيام بها على الزمن والمكان والموادّ اللازمة لإكمال التجربة.

حلّ نتائجك بعد أن تُكمل التجربة وتحصل على بياناتك كاملة عليك أن تحلّل نتائجك، وبذلك تستطيع أن تحدّد إذا كانت بياناتك تدعم فرضيتك أم لا؛ فإذا لم تدعم فرضيتك فأنت ما زلت تتعلم من التجربة وتحصل منها على معلومات قيمة. وربما تحتاج فرضيتك إلى مراجعة، أو تجري تجربتك بطريقة أخرى؛ فقد يساعدك على ذلك توافر مزيد من المعلومات السابقة. تذكر أنّ العلماء ذوي الخبرة - كما في الشكل ١٧ - قلّما يكون لديهم نتائج تدعم فرضياتهم دون أن يقوموا بعدد كبير من المحاولات أولاً.

يمكنك بعد تحليل نتائجك أن تتواصل مع معلمك وزملائك وتطلعهم عليها. وسيساعدك هذا على أن تسمع أفكارًا جديدة من زملائك، ممّا يحسّن بحثك. وقد تحوي نتائجك معلومات مفيدة لهم.

لقد تعلمت في هذا الدرس أهمية الطرائق العلمية، وخطوات حلّ المشكلة. تذكر أنّ بعض المشكلات تم حلّها باستخدام البحث الوصفي، وأخرى بالبحث التجريبي.

ربما يعمل هذان العالمان أشهرًا أو سنوات ليجدوا أفضل تصميم تجريبي لاختبار فرضيّة ما.

مراجعة ٢ الدرس

اختبر نفسك

- وضّح لماذا يستخدم العلماء النماذج؟ اذكر ثلاثة أمثلة عليها.
 - ٢. عرف المقصود بالفرضية.
- ٣. اذكر الخطوات الثلاث (الأساسية) التي يستخدمها
 العلماء عند تصميم استقصاء لحل مشكلة ما.
- ٤. حدد لاذا يُعد تحديد المشكلة التي يتعين حلّها بدقة أمرًا مهاً؟
- وس طول مكتبك مستخدمًا المسطرة المترية وعبر عن ذلك بوحدة الأمتار والسنتمترات والملمترات.
- 7. التفكيرالناقد إذا لم تدعم البيانات التي جمعتها وسجلتها في أثناء التجربة فرضيتك فهل يعني ذلك أن تجربتك فاشلة؟ وضح إجابتك.

تطبيق الرياضيات

استخدام النسب تم تقسيم قرية عدد سكانها
 ۱۰۰۰ نسمة إلى خمس مناطق متساوية في العدد.
 استخدم البيانات التالية لإنشاء رسم بياني بالأعمدة
 لتوضّح عدد المصابين بالكوليرا في كل منطقة.
 أ. ۰۰٪، ب. ٥٪، ج. ۰۱٪، د. ۲۱٪، هـ. ۳۰٪

الخلاصة

حل المشكلات

- الطرائق العلمية خطوات تتبع لحل مشكلة ما.
- و يستخدم البحث الوصفي عندما يصعب إجراء التجارب.

الأجهزة والمواد والنماذج

- النماذج أدوات مهمة في العلم.
- يُستخدم النظام العالمي للوحدات (SI) لأخذ القياسات.
 - تجمع البيانات وتسجل وتنظم.

استخلاص النتائج

يبحث العلماء عن أنماط أو علاقات في البيانات التي يجمعونها، ثم يتواصلون بنتائجهم مع الآخرين.

تصميم البحث التجريبي

- تبدأ التحرية يفرضية.
- المتغيرات عوامل تتغير خلال التجربة.
- العينات الضابطة لا تتعرض لأثر المتغير المستقل
 لكي تقارن نتائجها بنتائج تلك العينات التي
 تعرضت لأثر المتغير المستقل.
- بعد أن تُستخلص النتائج يتم التواصل بها مع علماء آخرين.

العلوم والمواقع الإلكترونية لزيد من الاختبارات القصيرة ارجع إلى الموقع الإلكتروني: www.obeikaneducation.com

العلم والتقنية والمجتمع

في هذا الدرس

الأهداف

- تحدّد أثر كل من العلم والتقنية في حاتك.
- تحلّل كيف تسهم التقنية الحديثة في انتشار الاكتشافات العلميّة حول العالم.

الأهمية

تمكّن أنظمة الاتصال الحديثة الناس من التواصل، والتعرّف على الاكتشافات العلمية، وتشارك المعلومات في جميع أنحاء العالم.

🤉 مراجعة المفردات

الحاسوب جهاز كهربائي يمكن برمجته لتخزين البيانات واسترجاعها ومعالجتها.

المفردات الجديدة

• تقنية المعلومات.

العلم في الحياة اليومية

عرفت الكثير عن أهمية العلم، وتعلمت بعض فوائده في حياتك اليومية. ولاتقتصر ممارسة العلم على إتمام نشاط علمي، أو قراءة محتوى علمي، أو حفظ مفردات أو اتباع خطوات معينة، بل تتعداه إلى جوانب أخرى عديدة ومهمة.

الاكتشافات العلمية

يتمثل معنى العلم وأهميته في جوانب متنوعة في حياتك اليومية؛ إذ تؤدي الاكتشافات الجديدة باستمرار إلى منتجات جديدة تؤثر في نمط الحياة، كما في الشكل ١٨. فمثلاً تمكّنت التقنية الحديثة من نقل المعلومات العلمية والثقافية من خلال شبكة الإنترنت التي تستعمل فيها أجهزة الحاسوب، أو بواسطة القرص المدمج (DVD) أو قرص الأشعة الزرقاء (blueray) الذي يتيح للمستخدم تخزين كم هائل من المعلومات، كما أنّ المشاهد يستطيع أن يتحكم في الكثير من الأجهزة الإلكترونية باستخدام جهاز التحكم من بعد (remote control).

التقدّم التقني تجعل التقنية حياتك مريحة؛ ومن ذلك الحاسوب المحمول يدويًّا إلى الحاسوب المحمول بالجيب، والتحضير السريع للطعام بواسطة الميكروويف، والأدوات الهيدروليكية التي تجعل أعمال البناء أسهل وأسرع

الشكل ١٨ غيّرت التقنية الحديثة طريقة عمل الناس ووسائل راحتهم.

حدّد أي من التقنيات الظاهرة بالصورة قد استخدمتها؟

الشكل ١٩ تستعمل بعض المعدات الهيدروليكية في أعمال البناء.

أيضًا، انظر الشكل ١٩، وأجهزة تحديد المواقع في السيارة التي تعتمد في عملها على الأقمار الاصطناعية، والتي تعطيك صورًا ورسومًا وتحدّد الموقع الذي تقصده واتجاهه والمسافة إليه.

تؤثر الاكتشافات الجديدة في حياتك اليومية وخصوصًا في الجانب الصحي؛ إذ تساعد التقنية المتقدمة - كما في الشكل ٢٠ - الكثير من الناس على أن يتمتعوا بصحة أفضل من خلال تطور تقنيات التشخيص والعلاج والجراحة، فالآن مثلاً؟ يوضع قرص صغير على الجلد، تخرج منه جرعات ثابتة من الدواء إلى الجسم لمعالجة مرض ما. وهناك العديد من الأجهزة المصغرة التي تمكن الأطباء من متابعة الأجنة للحفاظ على حياتهم، وتطبيق هندسة الجينات على البكتيريا لإنتاج أدوية مهمة، منها الأنسولين لمرضى السكري.

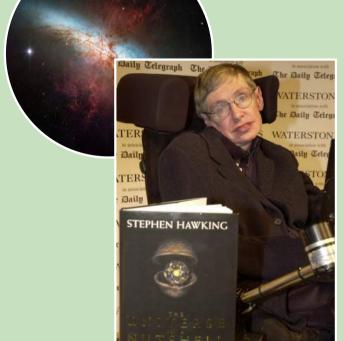
الاكتشافات العلمية الحديثة التي استخدمتها؟

المعرفة العلمية إنتاج تراكمي

إنّ المعرفة العلمية الجديدة تعد تحديًا للطرائق القديمة في التفكير، فقد صنّف الفيلسوف الإغريقي أرسطو على سبيل المثال، المخلوقات الحية إلى نباتات وحيوانات. وبقي هذا النظام في التصنيف معمولًا به حتى ظهرت أدوات جديدة، ومنها المجهر الذي مكّن العلماء من الوقوف على تفاصيل أكثر في دراسة المخلوقات الحية. وقد غيّرت المعلومات الجديدة نظرة العلماء إلى عالم الأحياء. وسيبقى نظام التصنيف الحالي يستخدم ما دام يجيب عن تساؤلات العلماء، أو حتى يظهر اكتشاف جديد أكثر دقة.

لم تقتصر الاكتشافات العلمية على جنس بشري واحد، أو ثقافة معينة، أو زمن معين، كما في الشكل ٢١. وهناك طلاب في مثل عمرك توصلوا إلى بعض الاكتشافات المهمة.

طلاب علماء


ارجع إلى المواقع الإلكترونية عبر شكة الإنترنت

للبحث عن معلومات حول طلاب توصلوا إلى اكتشافات علمية أو ابتكار تقنية جديدة.

نشاط اختر عالمًا كنت قد قرأت عنه، واعمل مع زميل لك من الصف لتمثيل مشهد مقابلة هذا العالم، على أن يؤدي أحدكما دور من يُجري المقابلة، والآخر دور العالم.

الشكل ۲۰ ساعدت التقنية الطبية الحديثة الناسَ على التمتع بصحة أفضل. يدرس الطبيب سلسلة من صور الأشعة السينية، وهي من الطرائق الحديثة التي تساعد على رؤية المشاكل الداخلية من أجل حلها.

الشكل ۲۱ العلم والتقنية نتائج لجهود كثير من الناس.

▲ ستيفن هوكينغ: عالم فيزيائي، درس الكون والثقوب السوداء. وهو ألمع فيزيائي بعد أينشتاين.

▲ فريد بيجي: عالم فيزيائي، درس طرائق إنتاج الطاقة الحرارية دون إلحاق ضرر بالبيئة.

▲ د. دانيل هال وليمز: أجرى أول عملية قلب مفتوح وأسس مستشفى.

العالمة السعودية حياة سندي أول امرأة عربية تحصل على الدكتوراه في التقنية الحيوية من جامعة كامبردج، واستطاعت أن تتوصل إلى عدد من الاختراعات العلمية المهمة جعلتها تتبوأ مكانة علمية عالمية رفيعة، وكان من أهمها اختراع مجس للموجات الصوتية والمغناطيسية، يمكنه تحديد الدواء المطلوب لجسم الإنسان، كما يساعد رواد الفضاء على مراقبة معدلات السكر، ومستوى ضغط الدم في أجسامهم، وله تطبيقات متعددة في نواح مختلفة للصناعات الدوائية، وفحوصات الجينات والحمض النووي DNA الخاصة بالأمراض الوراثية، وكذلك المشاريع البحثية لحماية البيئة وقياس الغازات السامة.

استخدام المعلومات العلمية يوفر العلم الكثير من المعلومات المهمة التي يحتاجها الناس في اتخاذ قراراتهم، أو لإيجاد دواء جديد، أو لتطوير طريقة جديدة لإنتاج الكهرباء. وعلى أي حال، لا يستطيع العلم أن يقرر ما إذا كانت المعلومات جيدة أم سيئة، أخلاقية أم لا؛ لأنّ العلوم التجريبية لا تتعرض لمثل هذه الأمور. ويمكننا أن نقرر ضرر المعلومات الجديدة أو فائدتها للبشرية عندما

نعرضها على شريعتنا السمحاء. وتعمل شبكة الإنترنت على نشر الاكتشافات الجديدة إلى العالم. إلا أنّه يجب التحقق من دقة وصحة هذه المعلومات التي يتم الحصول عليها من شبكة الإنترنت.

نظرة إلى المستقبل

اكتشف أحمد وبدر أنّ التقنية غيّرت طريقة تتبع العلماء المعاصرين لمصدر المرض؛ إذ ساعدتهم المعلومات الجديدة عن البكتيريا والأدوات والأجهزة الحديثة ومنها تلك التي تظهر في الشكل ٢٢ على تحديد أنواع معينة من هذه المخلوقات الحية، فضلاً عن استخدام الحواسيب في عمل نموذج يبين كيف تقتل هذه البكتيريا الخلايا السليمة، أو كيف تسبب العدوى. ويستخدم العلماء حاليًّا الهوات ف النقالة والحواسيب والإنترنت للتواصل فيما بينهم. وقد أدّت تقنية المعلومات (الحالمي الواسع للمعلومات)

الشكل ۲۲ مكّنت المختبرات الحديثة العلماء من تتبع مصدر المرض، و حل الكثير من المشاكل العلمية الأخرى.

مراجعة ٣ الدرس

الخلاصة

العلم في الحياة اليومية

- تؤدي الاكتشافات الجديدة إلى تقنيات جديدة، تجعل حياتك أكثر راحة ورفاهية.
- ساعَد تقدّم التقنية الكثير من الناس على التمتع بحياة أكثر صحة.

المعرفة العلمية إنتاج تراكمي

- تغير المعلومات والاكتشافات الجديدة نظرة العلماء إلى العالم.
- لا تقتصر الاكتشافات على جنس بشري واحد أو عرق أو ثقافة أو فترة زمنية معينة.
- تساعد شبكة الإنترنت على سرعة انتشار المعلومات،
 ولكن ينبغى التحقق مما يرد بها.
- تستخدم الحواسيب لعمل النماذج في مجالات العلم كافة.
- أدّت تقنية المعلومات إلى سهولة انتشار المعلومات على نطاق واسع من العالم.

اختس نفسك

- 1. حدد أحد إسهامات العلم أو التقنية في تحسن صحتك.
- استنتج ما الذي يجعل العلماء يغيرون نظرية قديمة عمرها ١٠٠ عام؟
- ٣. اعمل قائمة بخمس طرائق تمكّن العلاء من التواصل مع بعضهم لنشر آخر مكتشفاتهم.
- عن تقدمًا تقنيًّا يجعل حياتك أكثر متعة. ما الاكتشافات التي ساهمت في تطوّر هذه التقنية؟
- التفكيرالناقد: وضح لماذا تعد أنظمة الاتصالات
 الحديثة مهمة للعلماء في أنحاء العالم؟

تطبيق المهارات

7. ابحث عن أحد علماء المسلمين مستعينًا بمصدرين على الأقل من مصادر المعلومات، ودوّن عشر حقائق حول هذا العالم، ثم اكتب سيرته الذاتية باختصار مستخدمًا برنامج معالج النصوص.

العلوم وم من المواقع الالكترونية لزيد من الاختبارات القصيرة ارجع إلى الموقع الإلكتروني: www.obeikaneducation.com

متى تكون شبكة الإنترنت مزدحمة جدًا؟

الأهداف

- **تلاحظ** متى تستخدم أنت أو أصدقاؤك أو عائلتك الإنترنت.
- تبحث كيف تقيس سرعة الإنترنت.
- تحدّد الأوقات التي تكون فيها شبكة الإنترنت أكثر بطءًا في مختلف مناطق المملكة.
- تَمثُل بيانيًّا نتائجك وترسلها إلى الطلاب الآخرين.

مصدر البيانات

زر الموقع الإلكتروني

blue.msscuence.com/internet_lab

أو أي مواقع أخرى تراها مناسبة لتحصل على معلومات عن كيفية قياس سرعة شبكة الإنترنت، وأوقات انشغالها، لكي تتمكن من تبادل البيانات مع زملائك.

🦱 سؤال من واقع الحياة

تستطيع أن تحصل على المعلومات في أي وقت من أي مكان في العالم بواسطة شبكة الإنترنت، ولذا سميت "طريق المعلومات السريع"، ولكن هل تزدحم شبكة الإنترنت بالمستخدمين كما تزدحم حركة المرور على الطرق السريعة؟ وهل تكون شبكة الإنترنت أكثر انشغالًا في أوقات معينة؟ وكم تستغرق البيانات لتنتقل عبر شبكة الإنترنت خلال أوقات مختلفة من اليوم؟

🔇 تصميمخطـة

- الحظ متى تستخدم أنت وعائلتك وأصدقاؤك الإنترنت. هل تعتقد أن الناس جميعهم يستخدمون الإنترنت في الوقت نفسه؟
- كيف تقيس سرعة الإنترنت؟ ابحث عن العوامل المختلفة التي قد تؤثر في سرعة الإنترنت. ما المتغيرات التي ستدرسها؟
- ٢٠ كم مرة ستقيس سرعة شبكة الإنترنت؟ وما الأوقات التي ستجمع فيها بياناتك؟

استخدام الطرائق العلمية

🔇 تنفيذ الخطة

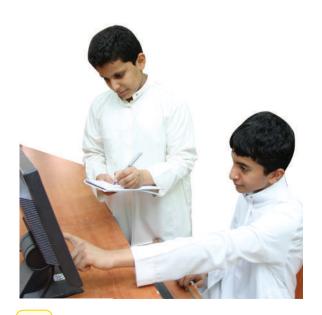
- 1. تأكد من أن معلمك قد وافق على خطتك قبل أن تبدأ تنفيذها.
- ١٠ ارجع إلى الرابط المبين أدناه، واضغط على زر روابط الصفحة، لتظهر لك الروابط التي تساعدك على إجراء هذا
 النشاط.
 - ٠٠ أكمل استقصاءك كما خطّطت له.
 - سجّل بياناتك جميعها في دفتر العلوم.
 - . شارك زملاءك في البيانات التي حصلت عليها.

🔵 تحليل البيانات -

- 1. سجّل في دفتر العلوم الوقت الذي وجدت أن إرسال البيانات عبر الإنترنت استغرق فترة أطول.
- ٢. قارن بين نتائجك ونتائج زملائك في المناطق الأخرى من المملكة، وحدّد المناطق التي تنتقل فيها البيانات بسرعة.

🔕 الاستنتاج والتطبيق

- 1. قارن بين نتائجك ونتائج زملائك. متى تكون شبكة الإنترنت أكثر بطءً في منطقتك؟
 - استنتج ما العوامل التي قد تسبب اختلافًا في نتائج طلاب صفك؟
- **٣. توقع** كيف تتأثر بياناتك إن نفذت هذه التجربة في وقت مختلف من السنة، كإجازة الصيف مثلاً؟


تـــولامــــل

ببياناتك

ابحث عن هذه التجربة باستخدام الرابط أدناه، وأدرج بياناتك في الجدول الموجود في الموقع، وأرفق بياناتك مع بيانات الطلاب الآخرين، ثم فرع البيانات التي جمعتها على خريطة؛ لتعرُّف أوقات انشغال شبكة الإنترنت.

blue.msscience.com/internet_lab

www.obeikaneducation.com

المحلوم الأدب المالية

بحيرة الأصفر

كتب أحد الكتّاب يصف بحيرة الأصفر فقال:

تقع بحيرة الأصفر في محافظة الأحساء بالقرب من مدينة العمران. وهي من أكبر بحيرات تجميع المياه في المنطقة حيث يتجمع ماؤها من ثلاثة مصادر رئيسة هي: المياه الزائدة عن عمليات ري المزروعات، ومياه الأمطار، والمياه المعالجة الناتجة عن الصرف الصحى. ويتغير حجم البحيرة بين فصلي الشتاء والصيف؛ لأن جزءًا من مياهها يأتي من مياه الأمطار. وتحيط بالبحيرة الكثبان الرملية؛ لذلك يصعب الوصول إليها بسهولة. وتنمو حول البحيرة العديد من النباتات الصحراوية، ومنها: الطرفاء، والسرخس، وللبحيرة أهمية بيئية حيث تعد أماكن تجمّع الطيور المهاجرة الآتية من شمال الكرة الأرضية مهاجرة إلى جنوبها، وبالعكس. ويحدث هذا التجمّع مرتين في كل عام، ومن هذه الطيور: الإوز، والبرشون، ودجاجة الماء، والنورس، والحبارى، وغيرها. كما تحتوى البحيرة على أنواع متعددة من الأسماك. وتتعرض البحيرة إلى تلوث ناتج عن المياه المعالجة من الصرف الصحي؛ لذلك تحتاج إلى حلول جدية لتصبح أحد الأماكن السياحية المهمة في المنطقة.

فهم الأدب

الكتابة الواقعية تتمحور الكتابة الواقعية حول أشخاص وأماكن وأحداث حقيقية. ومن أنواع الكتابة الواقعية: السير الذاتية: ومنها التي يسرد خلالها المؤلف مواقف حقيقية عايشها بنفسه، أو التي يسرد فيها مواقف عايشها شخص آخر. والمقالات، بالإضافة إلى الموسوعات، والكتب التاريخية، والكتب العلمية، والجرائد، ومقالات المجلات. ولكن كيف يمكنك أن تحكم على صحة المعلومات؟

أسئلة حول النص

- ١. كيف يمكنك التأكد من صحة المعلومات الواردة في المقالة؟
- ٢. ما التلميحات الواردة في المقالة التي توضح رأي
 الكاتب حول أهمية البحيرة من الناحية البيئية؟
- ٣. العلوم والكتابة اكتب صفحة تحتوي على قصة واقعية حول أحد الأماكن الخارجية المفضّلة إليك.

البيئة تلوث الماء هو أي تغير البيئة أو البيولوجية في الخصائص الفيزيائية أو الكيميائية أو البيولوجية للمياه بحيث تصبح غير صالحة للاستخدام البشري أو لاستخدام المخلوقات الحية الأخرى. ويحدث هذا النوع من التلوث نتيجة مصادر مختلفة منها: المصانع، ومحطات معالجة مياه الصرف الصحي، والمناجم، وآبار النفط، وبقايا المواد المستخدمة في الزراعة.

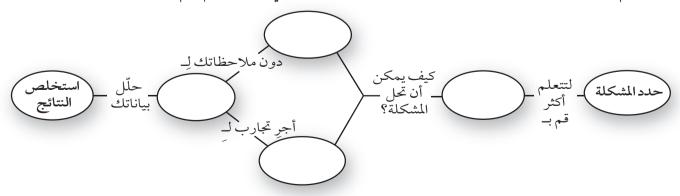
مراجعـة الأفكار الرئيسـة

الدرس الأول أسلوب العلم

- 1. العلم أسلوب ذو خطوات منظمة لحلّ المشكلات والإجابة عن الأسئلة. والتواصل عملية هامة في جميع جوانب العلم.
 - ٢. يستخدم العلماء أدوات للقياس.
- التقنية تطبيق العلم لصناعة أدوات ومنتجات تَستخدمها يوميًا، كالحاسوب الذي يُعد أداة تقنية قيمة.

الدرس الثاني عمل العلم

- ال توجد طريقة علمية واحدة تستخدم في حل المشكلات جميعها. التنظيم والتخطيط الدقيق عنصران مهمان في حل أي مشكلة.
- ٢. يمكن الإجابة عن الأسئلة العلمية بالبحث الوصفي أو التجريبي.
- العمل النماذج على توفير المال والوقت، وذلك بتجسيد المفاهيم والأفكار التي يصعب بناؤها أو تنفيذها، ولا يمكن أن تحلّ النماذج محلّ التجريب تمامًا.


- الفرضيّة فكرة يمكن اختبارها، ولا تدعم التجاربُ أحيانًا صحة الفرضية الأصلية، لذلك توضع فرضية جديدة.
- . تتضمن التجربة المخطّط لها جيدًا عينة ضابطة، بالإضافة إلى تغيير عامل واحد فقط خلال التجربة وتثبيت العوامل الأخرى.

الدرس الثالث العلم والتقنية والمجتمع

- 1. العلم جزء من حياة كل فرد، وتؤدي الاكتشافات العلمية إلى تقنيات حديثة ومنتجات جديدة.
- يواصل العلم مراجعة ما توصل إليه من معارف حول الظواهر وكيفية عمل الأشياء. وتستمر الأفكار والمعارف السابقة حتى تثبت الاكتشافات الجديدة قصورها أو عدم صحتها.
- يمارس الناس من مختلف الأعمار والأجناس والأعراق والثقافات العلم، كما يمارسه الخبراء المختصون.
- تضمن وسائل الاتصال الحديثة نشر المعلومات العلمية حول العالم.

تصور الأفكار الرئيسة

أعد رسم الخريطة المفاهيمية التالية حول خطوات حل مشكلة ما في دفتر العلوم، ثم أكملها:

استخدام المفردات

المتغير الثابت المتغير التابع البحث التجريبي المتغير المستقل النموذج الطرائق العلمية العينة الضابطة البحث الوصفي الفرضية تقنية المعلومات العلم التقنية

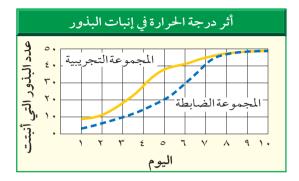
اربط المفردة أعلاه بالتعريف الصحيح لها فيما يلى:

- ١. العامل الذي يتم قياسه في التجربة.
- ٢. الحالة التي يمكن اختبارها.
- ٣. استخدام المعرفة في عمل منتجات.
- العينة التي يتم معاملتها مثل المجموعات التجريبية الأخرى ما عدا متغيرًا لا يطبق عليها.
 - ٥. خطوات تتبع حل مشكلة ما.
- ٦. المتغير الذي يبقى كما هو أثناء إجراء التجربة عدة مرات.
 - ٧. العامل الذي يتغير أثناء التجربة.

تثبيت المفاهيم

اختر رمز الإجابة الصحيحة لكل مما يلي:

- ٨. أي الإجراءات التالية ينبغي اتباعها للتحقق من صحة نتائج التجربة؟
 - أ. إجراء عدّة محاولات. ج. اختيار فرضيتين.
 ب. التحيز في الإجراءات. د. تعميم النتائج.
 - ٩. ما الذي تستند إليه في توقع ما يحدث في تجربة ما؟
 أ. العينة الضابطة ج. المعرفة السابقة ب. التقنية د. عدد المحاولات
- ١٠. أيّ ممّا يلي يقلق العلماء أكثر عندما يستخدمون الإنترنت؟
 - أ. دقة المعلومات وصحتها ج. السرعة
 ب. توافر المعلومات


- 11. استخدام كميات مختلفة من المضادات الحيوية في تجربة على البكتيريا مثال على:
 - أ. العينة الضابطة ج. الفرضية
 - ب. التحيز د. العامل المتغير
- ١٢. في أيّ العمليات التالية تُستخدم الحواسيب في العلم؟
- أ. تحليل البيانات. ج. عمل النماذج.
- ب. التواصل مع العلماء الآخرين. د. جميع ما ذكر.
- 17. استخدام الحاسوب في عمل صورة ثلاثية الأبعاد لبناء معين يعد مثالًا على:
 - أ. عمل النموذج ج. العينة الضابطة
 - ب. المتغير التابع د. وضع الفرضية
- 11. أيّ المهارات التالية يستخدم العلماء عندما يضعون توقعًا يمكن اختباره؟
 - أ. الافتراض ج. الاستنتاج
 - ب. أخذ القياسات د. عمل نماذج
- 10. أي ممّا يلي يُمثِّل الخطوة الأولى للبحث عن حلّ مشكلة ما؟
 - أ. تحليل البيانات ج. استخلاص النتائج
 - ب. تحديد المشكلة د. اختبار الفرضية
 - ١٦. أيّ مما يلي يصف العامل الذي لا يتغير في التجربة؟
 - أ. الفرضية ج. التابع
 - ب. الثابت د. المستقل
- ۱۷. أجرت هدى تجربة لتعرف ما إذا كانت السمكة يزداد طولها بشكل أسرع في الماء البارد، فكانت تقيس طولها مرة واحدة كل أسبوع وتسجل بياناتها. كيف يمكنك أن تُحسِّن من تجربتها؟
 - أ. إعداد حوض به ماء دافئ كعينة ضابطة.
 - ب. قياس كتلة السمكة يوميًّا.

مراجعة الفصل

تطبيق الرياضيات

استعن بالرسم أدناه للإجابة عن السؤال ٢٥.

- 10. إنبات البدرة قام فريق من الطلاب بقياس عدد بذور الفجل التي تنبت خلال 10 أيام. وفي هذا النشاط تم إنبات المجموعة الضابطة في درجة حرارة ٢٠٠س، والمجموعة التجريبية في درجة حرارة ٢٠٠س. ما مقدار الزيادة في إنبات بذور المجموعة التجريبية على بذور المجموعة التجريبية على الرسم البياني أعلاه؟
- ٢٦. النظام العالمي لوحدات القياس جمعت عينة من ماء بركة لتفحصها في المختبر، ووضعت العينة في وعاء سعته لتر واحد، فكانت بمقدار نصف الوعاء فقط. ما مقدار عينة الماء التي جمعتها بالمللتر؟ ارجع إلى الجدول ١ في هذا الفصل للمساعدة.

استعن بالجدول التالي للإجابة عن السؤال ٢٧.

ضحايا المرض				
عمر الفئة (بالسنوات) عدد الأفراد				
٣٧	حديث الولادة			
۲٠	1 7			
۲	10-11			
1	71-17			
•	فوق ۲۰			

٢٧. بيانات المرض مثّل بيانيًّا البيانات الواردة في الجدول. أيّ الفئات العمرية تصاب بالمرض غالبًا؟ وأيّ فئة عمرية لا تصاب بهذا المرض؟

- ج. استخدام حوض أكبر.
- د. قياس درجة حرارة الماء.

التفكيرالناقد

- ١٨. ١ستنتج ما أهميّة تسجيل البيانات عند جمعها؟
- 19. قارن بين تحليل البيانات واستخلاص النتائج.
 - ٠٢٠. وضّح فوائد تجنب التحيز في التجارب.
- ٢١. حدد لماذا يجمع العلماء المعلومات المعروفة مسبقًا عندما يرغبون في حلّ مشكلة ما؟
- ۲۲. تعرف السبب والنتيجة إذا تغيّرت ثلاثة عوامل في وقت واحد في تجربة ما فماذا يحدث لدقة وصحة النتائج المستخلصة؟

استعن بالصورة التالية للإجابة عن السؤال ٢٣.

. ٢٣. فسر. إذا أضفت مضادين حيويين مختلفين إلى عينتين من البكتيريا في طبقين مختلفين ولم تضف مضادات حيوية إلى العينة الضابطة، فنمت عينتا البكتيريا في الظروف نفسها ما عدا الطبق ب، فكيف يمكن أن تفسر نتائجك؟

أنشطة تقويم الأداء

٢٤. ملصق. صمِّم ملصقًا يوضِّح خطوات الطريقة العلميّة،
 واستخدم صورًا مبتكرة لتوضِّح خطوات حلَّ المشكلة.

الفكرة العامة

تحدث معظم الزلازل والبراكين على حدود الصفائح؛ حيث تتحرّك الصفائح الأرضية حركة نسبية بعضها إلى بعض.

الدرس الأول

الزلازل

الفكرة الرئيسة الزلازل اهتزازات أو موجات زلزالية تتولد بسبب حدوث كسر في الصخر والارتداد المرن على امتداد الصدع.

الدرس الثانى

البراكين

الفكرة الرئيسة تخرج الصهارة والغازات والموادّ الصلبة إلى سطح الأرض من خلال الفوهات والشقوق مكونة التضاريس والمواد البركانية المتنوعة.

الدرس الثالث

الصفائح الأرضية وعلاقتها بالزلازل والبراكين

الفكرة الرئيسة تؤدي تيارات الحمل في الستار إلى حركة الصفائح التي ينجم عنها الزلازل والبراكين.

تغيرات الأرض

جوف الأرض المضطرب

تدفقت أنهار من اللابة الحارة إلى أسفل الجبل، وغمرت المباني الصغيرة، وهددت المنازل والأبنية بعد سلسلة من الزلازل. ما سبب ذلك؟

دفتر العلوم هل هناك علاقة بين الزلازل والبراكين، أم أن كلًا منهما يحدث مستقلًا عن الآخر؟ اقترح أفكارًا تفسر أسباب هذه الأحداث.

نشاطات تمهيدية

شيّد بقوة

تحدث أعظم المخاطر المصاحبة للزلازل عندما يكون الناس داخل منازلهم أو مكاتبهم أثناء حدوث الزلزال. ستلاحظ في التجربة التالية كيف يمكن استخدام المواد الإنشائية في تقوية المبنى.

- ا. شيد مبنى من أربعة جدران مستخدمًا مكعبات خشبية، وضع قطعة من الكرتون المقوى فوق الجدران الأربعة لتمثّل سقف المبنى.
- أ. أُمـز الطاولة التي عليها المبنى بلطف، وصف ما حدث.
- ٣. أعد إنشاء المبنى، ولُفّ شريطًا مطاطيًّا كبيرًا
 حول كلّ جدار من المكعبات، ثم لفّ شريطًا
 مطاطيًّا آخر حول المبنى.
 - ٤. هُزّ الطاولة بلطف مرة أخرى.
- التفكير الناقد دون في دفتر العلوم أي اختلاف لاحظته في أثناء اهتزاز المبنى في الحالتين. ضع فرضية توضّح عمليًّا كيف تستفيد من التحسينات التي أجريتها في تشييد المباني.

المطويات

منظمات الأفكار

الرلازل والبراكين اعمل المطوية التالية لتساعدك على المقارنة بين خصائص الزلازل والبراكين.

الخطوة ١ ارسم علامة عند منتصف الورقة.

الخطوة ٢ أفّ الورقة عرضيًا، ثم اطو الحواف الخارجية، على أن تلامس العلامة المرسومة في منتصف

المرسومة في م الورقة.

الخطوة ٣ ارسم بركانًا على إحدى الطيات؛ وعنونه بكلمة براكين، ثم ارسم شكلًا

يوضح الزلزال على الطية الأخرى وعنونه بكلمة زلازل. يجب أن يحتوي الجزء الداخلي على خصائص يشترك فيها الحدثان.

حلّل وانقد اكتب -قبل قراءة الفصل - ما تعرفه عن الزلازل والبراكين خلف كل جهة. وأضف في أثناء قراءتك للفصل معلومات جديدة عن الزلازل والبراكين.

لمراجعة محتوى هذا الفصل وأنشطته ارجع إلى الموقع الإلكتروني www.obeikaneducation.com

العلـــوم 🕙 عبر المواقع الإلكترونية

أتهيأ للقراءة

المراقبة الواعية

- الْعَلَم المراقبةُ الواعيةُ أو تعرُّف نقاط الضعف والقوة لديك استراتيجيةٌ مهمة تساعدك على تحسين القراءة. فعندما تقرأ نصًا اسأل نفسك وتفكر؛ لتتأكد أن ما تقرؤه له معنى عندك. ويمكنك اكتشاف أساليب مختلفة في المراقبة الواعية قد تستخدم في أوقات مختلفة؛ بحسب الهدف من القراءة.
- أندرب اقرأ الفقرة التالية وأجب عن الأسئلة التي تليها. ناقش إجاباتك مع زملائك الطلاب؛ لتتعرف كيف يراقبون قراءتهم.

فعندما تتعرض الصخور بمشيئة الله وقدرته لقوة كافية يتغير شكلها، كما أنها قد تنكسر، ثم تعود حواف الأجزاء المكسورة سريعًا إلى مكانها الأصلي، وتُسمّى هذه العملية الارتداد المرن. وتتغيّر أشكال الصخور عادة أو تتشوه ببطء خلال فترات زمنية طويلة. صفحة ٥٠.

- ماذا تكوّن لديك من أسئلة بعد القراءة؟
- هل فهمت كل الكلمات الموجودة في النص؟
- هل تحتاج إلى أن تتوقف مرارًا عن القراءة؟ هل مستوى مقروئية النص مناسب لك؟

أطبّق اختر إحدى الفقرات التي يصعب فهمها. وناقشها مع زميلك لتحسن مستوى فهمك.

راقب قراءتك من حيث البطء أو السرعة، اعتمادًا على فهمك للنص.

توجيه القراءة وتركيزها

ركز على الأفكار الرئيسة عند قراءتك الفصل باتباعك ما يلى:

- **قبل قراءة الفصل** أجب عن العبارات في ورقة العمل أدناه:
 - اكتب (م) إذا كنت موافقًا على العبارة.
 - اكتب (غ) إذا كنت غير موافق على العبارة.
- **الفصل** ارجع إلى هذه الصفحة لترى إن كنت قد غيّرت رأيك حول أي من هذه العبارات.
 - إذا غيرت إحدى الإجابات فبيّن السبب.
 - صحّح العبارات غير الصحيحة.
 - استرشد بالعبارات الصحيحة أثناء دراستك.

بعد القراءة م أوغ	العبارة	قبل القراءة م أوغ
	 يمكن للجزء الصخري من الأرض أن يرتد ارتدادً مرنًا، كما هو الحال في منصة القفز (الغطس). 	
	 تتولد الموجات الزلزالية الأولية في المركز السطحي للزلزال. 	
	٣. التسونامي موجات مدّ ضخمة.	
	 ٤. يحرر الزلزال الذي قوته ٥, ٧ درجة على مقياس رختر طاقة تُعادل ٣٢ مرةً أكثر من الطاقة التي يحررها زلزال قوته ٥, ٦ درجة على المقياس نفسه. 	
	 اللابة مصهور الصخور الذي يتكوّن في باطن الأرض. 	
	٦. تؤثر مكوّنات الصهارة في كيفية ثوران البركان، في هدوئه أو عنفه.	
	 ٧. معظم الإجهاد الناتج عن حركة الصفائح الأرضية يكون على الصخور التي في وسط الصفائح. 	
	 ٨. تحدث معظم الثورانات البركانية على حدود الصفائح أو بالقرب منها. 	
	٩. تقع جزر هاواي البركانية بالقرب من حدود صفائحية.	

الـزلازل

في هذا الدرس

الأهداف

- توضّح كيف تحدث الزلازل نتيجة تراكم الإجهادات في صخور القشرة الأرضية.
- تقارن بين الموجات الأولية والثانوية والسطحية.
- تتعرّف مخاطر الزلازل، وكيف تستعد لها.

الأهمية

تساعدك دراسة الزلازل على معرفة أماكن حدوثها وكيفية الاستعداد لها.

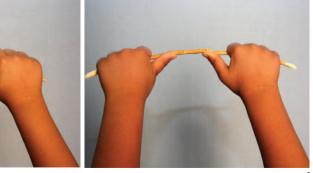
🗣 مراجعة المفردات

الطاقة القدرة على إحداث تغيير.

المفردات الجديدة

- السيزموجراف • الزلزال
 - قوة الزلزال • الصدع
- الموجة الزلزالية موجات التسونامي
 - آمن ضد الزلازل • بؤرة الزلزال
 - المركز السطحي للزلزال

الشكل ١ يمكن ثني الغصن الجاف بمقدار محدود قبل أن ينكسر .

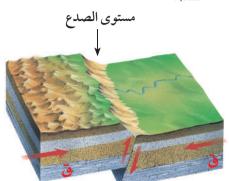

لا شك أن الأرض بما فيها خلق من خلق الله، تأتمر بأمره وتخضع لتدبيره وتقديره، وقد أخبر الله عز وجل عن ظاهرة عظيمة تحدث في الطبيعة، فقال: ﴿إِذَا زُلْزِلَتِ ٱلْأَرْضُ زِلْزَالْهَا ١ وَأَخْرَجَتِ ٱلْأَرْضُ أَثْقَالَهَا ١ وَقَالَ ٱلْإِنسَانُ مَا لَهَا ١ يَوْمَهِذِ تُحَدِّثُ أَخْبَارَهَا اللَّ بِأَنَّ رَبِّكَ أَوْحَى لَهَا اللَّهِ الزلزلة.

أسباب الزلازل

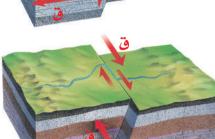
لعلك حاولت يومًا ثني غصن شـجرة جاف أو كسـره، فإذا ثنيته بلطف وببطء فسوف تلاحظ أنّ شكله قد تغير، ثم يعود إلى شكله الأصلى عند إفلاته. أما إذا استمررت في ثنيه فسوف ينكسر عند حد معين، كما في الشكل ١، وستشعر باهتزازات في الغصن.

الارتداد المرن على الرغم من صلابة الصخور إلا أنه عندما تؤثر قوى السحب أو الدفع فيها فإن النتيجة تكون مماثلة لما يحدث لغصن الشجرة عند ثنيه. فعندما تتعرض الصخور بمشيئة الله وقدرته لقوة كافية يتغير شكلها، كما أنها قد تنكسر، ثم تعود حواف الأجزاء المكسورة سريعًا إلى مكانها الأصلى، وتُسمّى هذه العملية الارتداد المرن. وتتغيّر أشكال الصخور عادة أو تتشوه ببطء خلال فترات زمنية طويلة. فمع تعرّض الصخور للإجهادات تتراكم طاقة داخلها، ثم تتحرّر هذه الطاقة فجأة نتيجة تكسر الصخور وتحركها. وتؤدى هذه التكسرات والحركات إلى حدوث اهتزازات تنتقل خلال الصخر أو أيّ مادة في الأرض. وإذا كانت هذه الاهتزازات كبيرة لدرجة كافية فسوف نحس بها على هيئة زلزال Earthquake.

الزلزال؟ ماذا يقصد بالزلزال؟ ماذا يقصد بالزلزال؟



تُحتزن طاقة وضع في الغصن الجاف عند ثنيه. تحرّرت الطاقة على صورة اهتزازات عندما انكسر


الغصن الجاف.

i ينتج الصدع العادي عندما تسحب الصخور من الجانبين تحت تأثير إجهادات الشد (قوى الشد).

ب ينتج الصدع العكسي عندما تتعرض الصخور لإجهادات ضغط.

مستوى الصدع

ت ينتج الصدع الجانبي (الإنزلاقي) عندما تتعرض الصخور لإجهادات قص (تؤثر فيها بصورة جانبية).

تجربة

الشكل ٢ تتكون الصدوع عندما

تتعرض الصخور للكسر.

ويعتمد نوع الصدع الناتج على نوع الإجهاد المؤثر في

ملاحظة التشوه

تحدير لاتتذوق أو تأكل أيّ مادّة في المختبر، واغسل يديك عند الانتهاء.

الخطوات 🗫 🚏

- انزع أغلفة ثـ الاث قطع من حلوى التوفي.
- ٢. أمسك إحدى القطع بشكل أفقي بين يديك، وادفع طرفيها بلطف في اتجاهين متعاكسين إلى الداخل.
- ٣. أمسك قطعة أخرى من حلوى
 التوفي، واسحب طرفيها نحو
 الخارج.

التحليل

- أيّ الخطوات التي قمت بها تدلّ على قوى الشـد، وأيّها تدل على قوى الضغط؟
- ٢. استنتج: كيف يمكن التأثير بقوى قصص في قطعة حلوى التوفي الثالثة؟

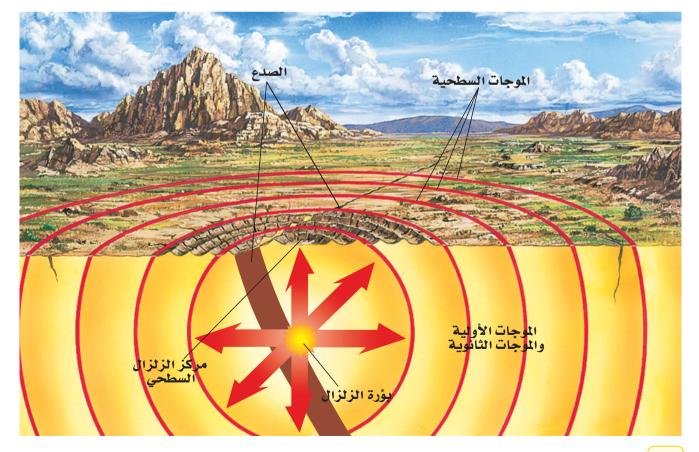
أنواع الصدوع يقول الله عز وجل: ﴿ وَالْأَرْضِ ذَاتِ الصَّنْعِ ﴿ اللهِ لَفَوْلُ فَصَّلُ ﴿ اللهِ الطارق أقسم الله تعالى في هذه الآيات بالأرض، وبهذه الظاهرة الجيولوجية العظيمة، وأرشدنا تبارك وتعالى إلى بعض الأسرار الخفية في خلقه، ومنها الصدع.

عندما يُكسر مقطع من الصخر تتحرّك الصخور التي على جانبي الكسر نتيجة الارتداد المرن، ويُسمّى الكسر الذي تتحرك على امتداده الصخور وتنزلق صدعًا Fault. وهناك العديد من أنواع الصدوع؛ بحسب نوع الإجهاد المؤثر؛ وهو القوة المؤثرة على وحدة المساحة من الصخر.

يحدث الصدع العادي بسبب قوى الشد حيث تتحرك كتل الصخور التي تقع أسفل تقع فوق مستوى الصدع المائل إلى أسفل نسبة إلى الصخور التي تقع أسفل المستوى انظر. الشكل ٢أ. بينما يحدث الصدع العكسي بفعل قوى الضغط حيث تتحرك الصخور التي تقع فوق مستوى الصدع إلى أعلى نسبة إلى الصخور التي تقع أسفل منه انظر الشكل ٣ب. أمّا الصخور التي تتعرّض لقوى قصّ حكما في الشكل ٢جـفقد تنكسر ويتكوّن صدع انز لاقي (جانبي) تتحرّك فيه الصخور على جانبيه بعضها بجانب بعض في اتجاهين متعاكسين بفعل قوى القصّ.

من أين تأتي القوى التي تؤدي إلى تشويه الصخور أو كسرها؟ لماذا تتشكّل الصدوع؟ ولماذا تتكوّن الزلازل في أماكن محدّدة؟ وكيف تنتج القوى داخل الأرض؟ من خلال دراستك لهذا الفصل، ستدرك أن القوى الداخلية في باطن الأرض هي المسؤولة عن الحركة النسبية للصفائح الأرضية، والمسؤولة أيضًا عن حركة بعض أجزاء القشرة الأرضية فوق الستار.

ما الموجات؟


لعلك تذكر آخر مرة ناديت فيها زميلك بصوت عال. لقد تولدت الموجات الصوتية من اهتزاز الحبال الصوتية التي في حنجرتك، ثم انتقلت هذه الموجات إلى زميلك عبر الهواء. وبصورة مماثلة تنتقل الموجات التي تصدر عن الزلازل عبر مواد الأرض وعلى سطحها، وتسمى الموجات الزلزالية Seismic wave.

بؤرة الزلزال ومركزه السطحي تؤدي الحركة على طول الصدع إلى تحرير الطاقة الكامنة فيه، الطاقة الكامنة فيه، الطاقة الكامنة فيه، وعندما تحرر هذه الطاقة تخرج من الصدع في صورة موجات زلزالية. وتُسمّى النقطة داخل الأرض التي تبدأ الحركة عندها وتتحرر الطاقة بؤرة الزلزال Focus كما في الشكل ٣. أمّا النقطة التي على سطح الأرض الواقعة فوق بؤرة الزلزال مباشرة فتسمى المركز السطحى للزلزال Epicenter.

الموجات الزلزالية تنتقل الموجات الزلزالية من بؤرة الزلزال، ثم تنتشر في جميع الاتجاهات بعيدًا عنها. حيث تتحرّك بعض هذه الموجات في باطن

الشكل تتكوّن عدّة أنواع من الموجات الزلزالية أثناء حدوث الزلزال. تنتشر الموجات الأولية والثانوية في جميع الاتجاهات من بـوّرة الزلـزال، ويمكنها الانتقال عبر باطن الأرض، بينما تنتشر الموجات السطحية على سطح الأرض.

استنتج أيّ أنواع الموجات الزلزالية أكثر تدميرًا؟

الأرض، بينما يتحرك بعضها الآخر على السطح. وتؤدي الموجات السطحية إلى حدوث معظم الدمار أثناء حدوث الزلزال.

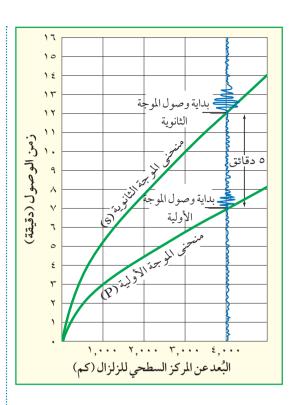
تنتقل الموجات الأولية والثانوية في باطن الأرض. حيث تنتقل الموجات الأولية والمعروفة باسم موجات "P" بأقصى سرعة داخل الصخر؛ وهي موجات طولية تتحرك جزيئات الصخر فيها إلى الأمام والخلف، أي أنها تهتز في الاتجاه نفسه الذي تسير فيه الموجات. وتنتقل الموجات الثانوية؛ وهي موجات مستعرضة - المعروفة باسم موجات "S" - خلال المواد الصخرية، مما يؤدي إلى اهتزاز جزيئات الصخر بشكل عمودي على اتجاه حركة الموجات. وقد تم التوصل من خلال دراسة هذه الموجات إلى معرفة الكثير عن باطن الأرض. أما الموجات السطحية فهي أطول الموجات الزلزالية، وأقلّها سرعة، وهي المسببة لمعظم الدمار أثناء حدوث الزلزال، كما أنّ حركة الموجات السطحية معقدة؛ فبعض الموجات السطحية تتحرّك على امتداد سطح الأرض بشكل يؤدي إلى تحريك الصخر والتربة حركةً جانبية وفي الوقت نفسه إلى أعلى وإلى أسفل. وعند مشاهدة حركتها على اليابسة نجدها مثل حركة موجات مياه البحر. وبعض وهذه الموجات السطحية تهتز من جانب إلى آخر أفقيًّا وبصورة موازية لسطح الأرض. وهذه الحركة يمكن أن تكون هي المسؤولة عن تدمير المنشآت والأبنية.

التعلم من الزلازل

افترض أنك خرجت مع زميلك من الصف باتجاه ساحة المدرسة، وكانت سرعتك ضعف سرعته، ماذا سيحدث للمسافة التي بينكما؟ بمرور الوقت وكلما استمريتما في السير ستزداد المسافة التي تفصلكما، وسوف تصل أنت أولاً. استخدم العلماء اختلاف سرعة الموجات الزلزالية واختلاف زمن الوصول في حساب البُعد عن المركز السطحي للزلزال.

قياسات الزلزال علماء الزلازل هم العلماء الذين يدرسون الزلازل والموجات الزلزالية، ويُسمّى الجهاز الذي يستعملونه للحصول على تسجيل للموجات الزلزالية من أماكن العالم كافة بجهاز راسم الهزة "السيزموجراف Seismograph"، كما في الشكل ٤.

يحوي أحد أنواع الأجهزة أسطوانة ثُبتت عليها لفافة ورقية، داخل إطار ثابت. يعلّق بندول (رقاص) بالإطار، ويثبت قلم في نهاية البندول، وعند استقبال الموجات الزلزالية في المحطة تهتز الأسطوانة والورقة، بينما يبقى البندول والقلم في مكانهما. يقوم القلم المثبت على البندول برسم تسجيل للاهتزازات على الورقة. إن طول الخطّ المسجل على الورقة يشير إلى الطاقة التي تحرّرت من الزلزال، والتي تعبر عن قوة الزلزال


الشكل ٤ يدرس العلماء الموجات الزلزالية باستخدام جهاز السيزموجراف المنتشر في العالم.

يسجل جهاز السيزموجراف الموجات الزلزالية باستخدام كتلة ثابتة.

بعض الأجهزة تجمع البيانات وتخزنها على جهاز الحاسوب.

الشكل ٥ تنتقل موجات P، S بسرعات مختلفة. ويُستخدم الفرق في السرعات لمعرفة مدى قرب محطة الرصد من موقع الزلزال.

الشكل ٦ بعد حساب المسافة من ثلاث محطات رصد على الأقلّ يتم رسمها على الخريطة في صورة دوائر ذات أنصاف أقطار تساوي بُعد الزلزال عن المحطة. يكون المركز السطحي للزلزال هو مكان التقاء الدوائر الثلاث.

موقع المركز السطحي للزلزال يمكن حساب المسافة بين جهاز الرصد والمركز السطحي للزلزال عند تسجيل زمن وصول الموجات الزلزالية إلى محطة الرصد الزلزالي. فكلّما زاد الفرق في زمن الوصول بين نوعي الموجات "P و S" كانت المسافة بين المركز السطحي للزلزال ومحطة الرصد أكبر. ويمكن رؤية الفرق في زمن الوصول في الشكل O. ويستخدم العلماء هذه المعلومات في رسم دائرة حول محطة الرصد بنصف قطر يساوي بُعد الزلزال عن محطة الرصد، ويكرّر هذا بالنسبة لثلاث محطات رصد زلزالي على الأقلّ، كما في الشكل T. وتحدد النقطة التي تلتقي عندها الدوائر الثلاث موقع المركز السطحي للزلزال. وتستخدم عادة بيانات من أكثر من ثلاث مراكز رصد لتحديد موقع المركز السطحي للزلزال.

مقدار قوة الزلازل

يبين الجدول ١ بعض الزلازل الكبرى وأماكن حدوثها وقوتها وأعداد ما خلفته من ضحايا. فمثلاً في ٢٠ من سبتمبر عام ١٩٩٩م ضرب زلزال كبير منطقة في تايوان، وخلّف أكثر من ٢٤٠٠ قتيل و ٢٠٠٠ جريح، وترك ٢٠٠٠٠ شخص بلا مأوى. وقد يسبّب الزلزال دمارًا في أماكن تبعد مئات الكيلومترات عن مركزه السطحي، كما حدث في المكسيك عام ١٩٨٥م؛ فلقد كان المركز السطحي للزلزال على بعد ٢٠٠٠ كم من المدينة، لكن حركة الرسوبيات الطرية أسفل المدينة ألى تدميرها.

مقياس رختر يعتمد مقياس رختر لقياس قوة الزلازل على قياسات سعة (أو ارتفاع) الموجة الزلزالية المسجّلة على جهاز السيز موجراف. ويصف مقياس رختر مقدار الطاقة التي تتحرّر من الزلزال؛ إذ يقابل كلَّ زيادة بمقدار درجة واحدة على مقياس رختر زيادة في سعة أكبر موجة زلزالية مسجلة على جهاز الرصد مقدارها ١٠ مرات، كما أن زيادة درجة واحدة على مقياس رختر تعني مضاعفة طاقة الزلزال إلى زيادة درجة واحدة على مقياس رختر تعني مضاعفة طاقة الزلزال إلى فإنه يحرر طاقة أكبر ٣٢ مرة من الطاقة المتحررة من زلزال بدرجة ٥,٢، وتكون سعة الموجة أكبر ١٠ مرات من سعة موجة الزلزال الذي درجته ٥,٢، على مقياس رختر.

تدمير الزلزال توجد مقاييس وطرق أخرى لقياس الزلازل، ومنها مقياس ميركالي لقياس شدة الزلازل. وشدّة الزلزال هي قياس لمقدار التدمير الجيولوجي والبنائي الحادث في منطقة معينة بسبب الزلزال. وتتراوح الشدّة بالأرقام الرومانية من رقم I(۱) إلى رقم XII(۱). ويعتمد مقدار الدمار على عدّة عوامل، منها قوة الزلزال، ونوعية صخور سطح الأرض، وتصاميم المباني، وبُعد المنطقة المتضررة عن المركز السطحي للزلزال.

فالزلزال الذي شدته I يحس به قليل من الناس في الظروف العادية، بينما الزلزال الذي شدته VI (V) فيسبب تدميرًا كبيرًا الذي شدته VI (V) فيسبب تدميرًا كبيرًا في المباني وسطح الأرض.

التسونامي تحدث معظم الآثار التدميرية بفعل الموجات السطحية للزلازل؛ إذ تتصدع المباني أو تسقط، وتنخسف الجسور والطرق. من جهة أخرى يجب أن يحمي القاطنون بالقرب من الشواطئ أنفسهم من مخاطر أخرى؛ فعندما يحدث زلزال في قاع المحيط فإنّ الحركة المفاجئة تدفع المياه وتولد موجات مائية هائلة تتشر في جميع الاتجاهات بعيدًا عن مصدرها آلاف الكيلومترات.

وعندما تَكوُن هذه الموجات الزلزالية المائية التي تعرف بالتسونامي أعماقه بعيدة عن الشاطئ فإنّ طاقتها تتبدّد على مساحات البحر الواسعة، وأعماقه الكبيرة؛ إذ يكون ارتفاع الموجة في التسونامي أقلّ من متر في المياه العميقة، وقد تتجاوزها السفن دون أن تحس بها. وتصل سرعة موجات التسونامي في المحيطات المفتوحة إلى ٩٥٠ كم/ ساعة، وعندما تقترب من الشاطئ فإنّها تتباطأ ويزداد ارتفاعها بسبب احتكاكها بقاع البحر، ممّا يؤدي إلى تكوّن موجات الساطئ تسونامي بارتفاع يصل إلى ٣٠ مترًا. وقبل أن تضرب هذه الموجات الشاطئ يمكن أن تتحرّك المياه القريبة من الشاطئ فجأة نحو البحر وتنحسر عن الشاطئ. وهذه إشارة إلى خطر قريب، حيث ستضرب موجات التسونامي المنطقة قريبًا.

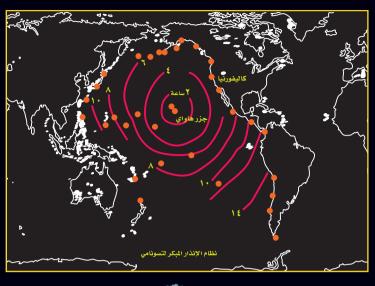
وأقرب مثال هو ما حدث في اليابان؛ فقد شهدت يوم الجمعة ١١/٣/١١ ٢٠ ٢م زلزالًا قوته ٩ , ٨ درجة على مقياس رختر، وهو الأعنف في تاريخ اليابان منذ ١٤٠ عامًا. وقد أدّى إلى حدوث موجات تسونامي وصل ارتفاعها إلى ١٠ أمتار اجتاحت مئات المنازل على الساحل الشمالي الشرقي لليابان. وخلّف الزلزال وما تلاه من موجات تسونامي أضرارًا جسيمة مدمرة، فكان هناك آلاف القتلى والجرحى والمفقودين. الزلازل ظاهرة متكررة في اليابان؛ حيث تُعد أراضيها من أكثر مناطق العالم النشطة زلزاليًّا؛ إذ يحدث فيها حوالي ٢٠٪ من زلازل العالم التي تزيد قوتها على ٦ درجات على مقياس رختر.

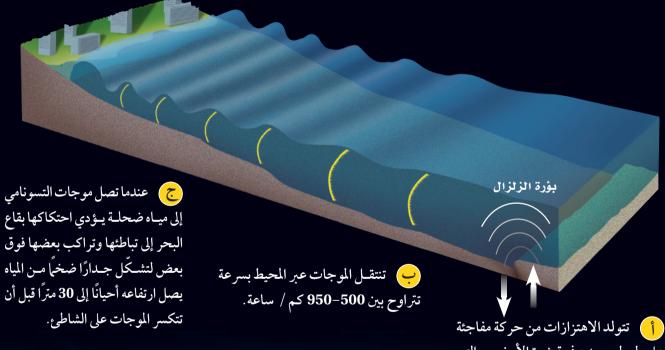
الجدول ١: الزلازل القوية			
القتلى	القوة	المكان	السنة
٦٢	٧,١	كاليضورنيا	۱۹۸۹م
0	٧,٧	إيران	199.
-	۸,۱	جزر ماريانا	1998
٣٠٠٠٠	٦,٤	الهند	1998
71	٦,٧	كاليضورنيا	1998
٥٣٧٨	٦,٨	الميابان	1990
72	٧,٧	تايوان	1999
١٠٣	٧,٩	إندونيسيا	7
Y · · · ·	٧,٧	اڻهند	71
٣٠٠٠٠	٦,٦	إيران	۲۰۰۳م

قوة الزلزال

ارجع إلى المواقع الإلكترونية عبر شبكة الإنترنت للحصول على روابط تحوي معلو مات عن قوة الزلزال.

نشاط اعمل جدولاً يقارن بين ستة زلازل من حيث حجم الدمار الحادث وقوة الزلزال وموقعه.


الكشف عن الموجات اربع إلى كراسة التجارب العملية


موجات التسونامي

الشكل ٧

التسونامي موجات بحريّة تتولد من الزلزال، ولها قدرة على إحداث تدمير كبير.

◄ نظام الإندار المبكر لتسونامي تدلّ النقاط البرتقالية الموضحة على الخريطة مواقع محطات مراقبة الموجات التي تشكِّل جزءًا من جهاز إنذار التسونامي في المحيط الهادي. وتوضّح الخريطة الفترة الزمنية التي تحتاج إليها موجات التسونامي المتولدة في جزر هاواي، حتى تصل إلى أماكن مختلفة في المحيط الهادي، وتمثل كل دائرة فرقًا في زمن الوصول بمقدار ساعتين.

على طول صدع في قشرة الأرض، والتي تنتقل إلى سطح الماء، وتنتقل عبر المحيط في صورة سلسلة من الموجات الطويلة.

جهاز رصد التسونامي

السلامة من الزلازل

درست فيما سبق عن الآثار المدمرة التي تحدثها الزلازل، والمخاطر التي قد تنتج عنها. وهناك إجراءات وأساليب يمكن اتباعها للتقليل من هذه الآثار والمخاطر. ومن الأمور التي يجب اتباعها لحماية نفسك الاطلاع على التاريخ الزلزالي للمنطقة. فإذا كان قد حدثت زلازل في المنطقة سابقًا فذلك يعني أن فرصة حدوثها مجددًا ما زالت قائمة، ويجب أن تستعد لذلك.

ابتعد أثناء حدوث الزلزال عن النوافذ أو أيّ شيء يمكن أن يتساقط عليك، وراقب كوابل الكهرباء التي على الأرض، التي قد تسبب اندلاع الحرائق، وكن حذرًا من الحوافّ الحادة التي تنشأ عن المبانى المنهارة.

هل بيتك آمن ضد الزلازل؟ ما الذي يمكنك فعله لتجعل بيتك آمنًا ضد الزلازل؟ تلاحظ في الشكل Λ – أنّ وضع الأجسام الثقيلة في الرفوف المنخفضة لكي لا تسقط هو أحد الأفكار الصحيحة، ويجب التأكد من أنّ الفرن الذي يعمل على الغاز آمن دائمًا، وذلك بوضع حساسات الغاز المبينة في الشكل Λ – ب والتي تقفل خطوط الغاز تلقائيًا في حالة حدوث اهتزاز ناتج عن الزلزال.

المباني الأمنة ضد الزلازل يعد المبنى آمنًا ضد الزلازل safe إذا كان قادرًا على مقاومة الاهتزازات الناتجة عن معظم الزلازل. لذلك يقوم القاطنون في المناطق الزلزالية على تحسين طريقة بنائهم. لذلك يقوم القاطنون في المناطق الزلزالية على تحسين طريقة بنائهم. وقد وُضع الكثير من معايير البناء في الأماكن التي تكثر فيها الزلازل، وشُعيد العديد من المباني المرتفعة على دعائم مطاطية وفو لاذية ضخمة تمكنها من الصمود في وجه الاهتزازات الناتجة عن الزلازل، كما تم استخدام أنابيب للمياه والغاز يمكن أن تنثني عند حدوث الزلزال، مممّا يمنع تكسرها ويقلل من خطر اندلاع الحرائق.

توقع الزلازل تخيل عدد الأشخاص الذين قد يُنقذون إذا عُرف موقع زلزال ضخم وزمن حدوثه. إن ذلك يساعد الناس على إخلاء المباني؛ لأنّ معظم الإصابات تحدث بسبب سقوط الأسقف عليهم. ويحاول الباحثون توقع وقت حدوث الزلازل من خلال ملاحظة التغيرات التي تسبق حدوثها. ومن تلك التغيرات الحركة عند الصدوع، التي يمكن رصدها بأجهزة الليزر، والاختلاف في منسوب المياه الجوفية، وتغير الخصائص الكهربائية في بعض الصخور تحت قوى الإجهاد.

الشكل ٨-أ يمكن التقليل من مخاطر التعرض للإصابة عن طريق التحضير المسبق للزلزال.

وضع الأشياء القابلة للكسر والثقيلة في الرفوف الدُّنيا لكي لا تسقط من ارتفاع كبير أثناء حدوث الزلزال.

الشكل ٨-ب ياستخدام حساس الاهتزاز على خطوط الغاز الخياز لكي يغلق جميع خطوط الغاز تلقائيًّا أثناء حدوث الزلزال.

استنتج ما المخاطر التي يتم تفاديها عند إغلاق الغاز في حالة حدوث زلزال؟

الشكل ٩ سبب زلزال العيص شقوق عميقة في الأرض.

ويعكف البعض على دراسة طبقات الصخور المتأثرة بفعل زلازل قديمة. وعلى الرغم من كل هذه التغيرات التي يسعى العلماء لقياسها إلا أنهم لم يتوصلوا إلى توقع دقيق لوقت حدوث الزلزال؛ لأنّه لا يوجد تغير واحد ثابت في الأرض لجميع الزلازل؛ فلكل زلزال حالته الخاصة به. لذلك لم يبق بأيدي العلماء إلا استخدام المعلومات المتعلقة بالتاريخ الزلزالي للمنطقة لحساب معدل حدوثه إحصائيًّا، وقد شهدت المملكة العربية السعودية عدة زلازل بالقرب من المدينة المنورة منها زلزال العيص وزلزال حرة الشاقة الذي بلغت قوته (٨, ٥) على مقياس ريختر، وهو أكبر زلزال شجّل رسميًّا على أجهزة الرصد الزلزالي في المملكة انظر الشكل ٩.

والزلازل آية دالة على قدرة الله سبحانه وتعالى؛ فالعباد تحت رحمته والأرض في قبضته. وفيها تذكير بيوم الزلزلة الكبرى. قال الله تعالى يَتَأَيُّهَا ٱلنَّاسُ ٱتَّقُوا رَبَّكُمْ قَالَ فَي قَبْ رَزِّنَهَا تَذْهَلُ كُلُّ مُرْضِعَةٍ عَمَّا أَرْضَعَتْ إِنَّ وَلَيْكُ مُ أَنْ الله عَلَى الله عَلَى الله عَلَى الله وَيَعَلَى الله عَلَى الله وَيَعَلَى وَيَعَلَى وَيَعَلَى الله وَيَعَلَى الله ويَعَلَى الله ويَعْلَى الله ويُعْلَى الله ويُعْلَى الله ويُعْلَى الله ويَعْلَى الله ويَعْلَى الله ويَعْلَى الله ويُعْلَى الله ويُعْلِي الله ويُعْلَى الله ويُعْلِمُ الله ويَعْلَى الله ويُعْلَمُ ويُعْلِقُلْ الله ويُعْلِمُ الله

مراجعة الدرس

الخلاصة

أسباب الزلازل

- تنتج الزلازل عن التحرر المفاجئ للطاقة التي في الصخور والحركة الناتجة عن ذلك.
- تعرف الصدوع بأنها كسور يرافقها حركة الكتل الصخرية على امتداد الكسر.

الموجات الزلزالية

- تعرف البؤرة بأنها المكان الذي يحدث فيه الزلزال.
 أمّا المركز السطحي فهو المكان الذي يقع فوق البؤرة مباشرة على سطح الأرض.
 - تولّد الزلازل موجات زلزالية.

مقدار قوة الزلزال

- يقيس مقياس رختر قوة الزلزال.
- و يقيس مقياس ميركالي شدة الزلزال.

السلامة من الزلازل

• يمكن تشييد المبانى بحيث تكون آمنة من الزلازل.

اختبر نفسك

- ١. اشرح ما يحدث للصخور عند تجاوز حدّ المرونة.
- حدد أيّ أنواع الموجات الزلزالية تسبب معظم الدمار؟
- ٣. طبِّق كيف أمكن تحسين المباني لتكون آمنة من الزلازل؟
- لخص كيف تستخدم الموجات الزلزالية في تحديد موقع مركز الزلزال؟
- التفكيرالناقد. اشرح كيف يمكن تصنيف زلزال بقوة ٨ على مقياس رختر بأنّه زلزال ذو شدة قليلة على مقياس ميركالي؟

تطبيق المهارات

7. تكوين جدول واستخدامه استخدم الجدول ١ للبحث في الزلزال الذي حدث في إندونيسيا سنة ٢٠٠٠م، والزلزال الذي حدث في كاليفورنيا سنة ١٩٨٩م، والزلزال الذي حدث في إيران سنة ١٩٩٩م، مفسِّرًا سبب الفروق الكبرة بين أعداد الضحايا.

البراكين

كيف تتشكل البراكين؟

عند قلب زجاجة تحتوي على عصير كثيف (مركَّز) تصعد فقاقيع الهواء الموجودة فيه إلى أعلى. وهذا يشبه إلى حد كبير ما يحدث للصخور المنصهرة ؛ حيث تجبر على الصعود إلى سطح الأرض من قبل الصخور المحيطة بها ذات الكثافة العالية. وتؤدي الصهارة الصاعدة إلى حدوث ثوران بركاني، لا يلبث أن يأخذ في التصلب، بينما تستمرّ الغازات في الخروج منه، ويتشكّل في النهاية جبل قمعي الشكل يُسمّى البركان من المحاكل يُسمّى البركان الله المحاكدة وعندما تتدفق الصهارة على سطح الأرض من فوهة البركان فإنّها تُسمّى اللابة والمواد البركان فانة الأخرى من خلالها.

تُلقي بعض الثورانات المتفجرة اللابة والصخور في الهواء آلاف الأمتار، وتُسمَّى هذه القطع الصخرية أو اللابة المتصلبة المتساقطة من الهواء بالمقذوفات الصلبة. ويتراوح حجم المقذوفات الصلبة بين غبار ورماد بركاني، وصخور كبيرة تُسمّى قنابل بركانية، كما في الشكل ١٠.

في هذا الدرس

الأهداف

- تشرح كيف تؤثر البراكين في الناس.
- تصف كيف تنتج البراكين موادً مختلفة.
- تقارن بين كيفية تكوُّن الأشكال الثلاثة من البراكين.

الأهمية

قد تعرّض الثورانات البركانية الإنسان والمخلوقات الحية لمخاطر كبيرة.

🥺 مراجعة المفردات

الصهارة صخور مصهورة في باطن الأرض.

المفردات الجديدة

- البركان
 - اللابة
- البركان الدرعي
- البركان المخروطي
 - البركان المركب

الشكل ١٠ تخرج المقذوفات الصلبة المتنوعة عند ثـوران البركان.

الشكل ١١ يرافق النشاط البركاني العديد من المخاطر.

(أ) يؤدي الرماد البركاني الذي يُغطي المنطقة إلى تدمير المنشآت، وقد يشكّل تدفقًا طينيًّا إذا امتزج بالأمطار.

(ب) تتعرض الأجسام التي تقع على طريق تدفق الفتات البركاني للدمار الكامل.

ً تجربة ً

عمل نموذج للثوران البركاني الخطوات 🥰 📨 ڃ

- املأ كيسًا بلاستيكيًّا ذاتي الإغلاق إلى نصف بجيلاتين أحمر.
- أغلق الكيس، واضغط على الجيلاتين حتى يصل إلى أسفل الكيس.
- اثقب الكيس من أسفل مستخدمًا قلمًا.

التحليل

- أي أجزاء البركان يمثله كل من الجيلاتين، والكيس البلاستيكي، والثقب.
- ما القوة الطبيعية التي قلدتها عندما دفعت الجيلاتين إلى أسفل الكيس البلاستيكي؟
- ٣. ما العوامل التي تؤدي إلى زيادة هذه القوى وحدوث الثوران البركاني في الطبيعة؟

أخطار البراكين اعتبر بركان جبل سوفريير الذي يقع في جزر الكاريبي بركانًا خامدًا، ولكنه في عام ١٩٩٥م وبتقدير من الخالق عز وجل فاجأ السكّانَ بنشاط بركاني؛ فقد قذف الرماد إلى ارتفاع وصل أكثر من ١٠٠٠٠ متر في الهواء، فغطّى الرماد مدينة "بلايموث" والعديد من القرى المجاورة، كما يظهر في الصورة (أ) من الشكل ١١.

ومن المخاطر التي تنتج عن ثوران البراكين تدمير المدن والقرى بسبب الانهيارات والتدفقات الطينية الملتهبة، وإغلاق الموانئ والمطارات. وقد يصل الرماد البركاني أثناء نشاط البركان إلى ارتفاعات تزيد على ١٤٠٠ م في الهواء، ثم يترسب هذا الرماد على سطح الأرض، وقد يتبعه حدوث تدفقات طينية عند هطول أمطار غزيرة.

ومن المخاطر الأخرى التي قد تتعرض لها المدن تدفق الفتات البركاني، الذي يمكن أن يحدث في أيّ وقت وعلى أيّ جانب من البركان. وتدفق الفتات البركاني عبارة عن انهيارات سريعة لصخور حارة متوهجة مصحوبة بغازات حارة، كما في الصورة (ب) من الشكل ١١، وقد تصل سرعة انتقال هذه التدفقات إلى ٢٠٠كم/ ساعة.

وقد تتحوّل مساحات شاسعة من الأراضي الخصبة إلى أراض قاحلة بسبب حدوث البراكين. وهذا يؤدي إلى هجرة العديد من السكان إلى أماكن مجاورة أكثر أمنًا.

أشكال البراكين

تعلمت سابقًا أنّ البراكين يمكن أن تسبب دمارًا كبيرًا. وعلى الرغم من ذلك فإنّ البراكين تضيف صخرًا جديدًا إلى قشرة الأرض مع كل ثوران. وتختلف البراكين بعضها عن بعض في طريقة إضافتها صخورًا جديدة إلى القشرة الأرضية؛ إذ يؤدي اختلاف أنواع الثوران إلى اختلاف أنواع البراكين.

ما الذي يحدّد طريقة ثوران البركان؟ تثور بعض البراكين بقوة، بينما يتدفق بعضها الآخر

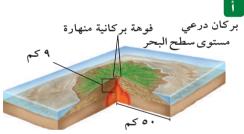
بهدوء؛ إذ يلعب تركيب الصهارة دورًا كبيرًا في تحديد طريقة تفريغ الطاقة أثناء ثوران البركان، فاللابة التي تحوي نسبة عالية من السليكا (مركّب يتكون من السليكون والأكسجين) تكون ذات كثافة (لزوجة) أكبر، ومن ثمّ تقاوم التدفق أكثر، ممّا يؤدي إلى ثوران البركان بعنف، بينما تتدفق اللابة المحتوية على الحديد والماغنسيوم وكميّات قليلة من السليكا بسهولة أكبر، مما يؤدي إلى ثوران البركان بهدوء، كما تلعب كمية بخار الماء والغازات الأخرى الموجودة في اللابة دورًا في كيفية ثوران اللابة.

عند رجّ زجاجة مشروبات غازية قبل فتحها يزداد ضغط الغاز الذي بداخلها، ويتحرّر الضغط فجأةً عند فتحها. وبالمثل تزيد الغازاتُ الضغط في الصهارة، ويبدأ ضغط هذه الغازات في التحرّر أثناء صعود الصهارة إلى سطح الأرض إلى أن يشور البركان في نهاية المطاف عند حدود الصفائح وعندما تغطس صفيحة أرضية أسفل صفيحة أخرى تنقل معها الماء من سطح الأرض إلى الستار ونتيجة ارتفاع الضغط والحرارة يتحول الماء إلى بخار ماء.

وتميل اللابة الغنية بالسليكا ذات اللزوجة العالية إلى حبس بخار الماء والغازات الأخرى فيها، ويؤدي تسخين البخار عند درجات حرارة عالية إلى توليد ضغط هائل على هذه الصهارة السميكة الغنية بالسليكا. وعند وصول الضغط إلى حد معين يحدث ثوران البركان. وتحدّد نوعية اللابة المتكونة والغازات الموجودة نوعية الثوران الناتج.

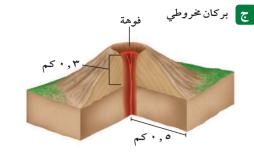
البراكين الدرعية تتدفق اللابة البازلتية الغنية بالحديد والماغنسيوم، التي تحوي نسبة قليلة من السليكا في صورة طبقات أفقية منبسطة. ويؤدي تراكم هذه الطبقات إلى تكوّن بركان واسع الامتداد، له جوانب قليلة الانحدار يُسمّى البركان الدرعي الله Shield volcano الشكل ١٢ ــ أ. تعدّ البراكين الدرعية أكبر أنواع البراكين، وتتكوّن في المناطق التي تندفع فيها الصهارة من أعماق كبيرة إلى أعلى. ومن البراكين الدرعية بركان ليمار في حرة رهط في المملكة العربية السعودية، انظر الشكل ١٢ _ ب.

ما المواد التي تتكون منها البراكين الدرعية؟

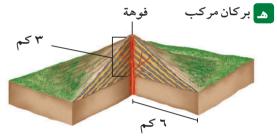

البراكين

ارجع إلى المواقع الإلكترونية عبر شبكة الإنترنت

للحصول على معلومات حول البراكين النشطة في العالم.


نشاط قارن بين أي بركانين نشطين، ونظّم المعلومات التي حصلت عليها في جدول، ذاكرًا تاريخ ثوران كل منهما، ومساحة الأرض التي تم تدميرها، وشكليهما. ضمّن تقريرك المعلومات والجداول، ثم اعرضه على زملائك.

الشكل ١٢ تختلف التضاريس البركانية من حيث الشكل والحجم.



إنّ طبيعة السيولة في اللابة البازلتية تكوّن تدفقات واسعة تمتد على مساحات شاسعة من سطح الأرض، كما في جبل ليهار في حرة رهط في المملكة العربية السعودية.

فوهة أحد البراكين المخروطية

و البراكين المركبة متوسطة الحجم والشكل مقارنة بالبراكين الدرعية والبراكين المخروطية.

ز من الأمثلة على ثوران الشقوق حرة رهط.

البراكين المخروطية تجمع الصهارة الغازات أثناء صعودها إلى سطح الأرض، وعندما تُحدث الغازات ضغطًا كافيًا يحدث الثوران البركاني. ويقذف الثوران البركاني واللابة المتوسط الشدة والقوي الغبار والرماد البركاني واللابة في الهواء، لتصل إلى ارتفاعات كبيرة، ثم تتصلب المادة المقذوفة بسرعة في الهواء، وتعود إلى الأرض. وتشكّل المقذوفات الصلبة عند سقوطها على الأرض مخروطًا صغيرًا من الموادّ البركانية، يُسمّى البركان المخروطي معنيرًا من الموادّ البركانية، يُسمّى البركان المخروطي على ارتفاعات أقل من ٢٠٠٣م، وتتشكّل عادة على هيئة مجموعات بجانب براكين كبيرة. ولا يدوم ثوران هذه البراكين فترة طويلة؛ لأنّ الثوران يحدث بسبب المحتوى الغازي العالي؛ إذ يتوقف الثوران بعد تحرّر الغازات. ومن البراكين المخروطية بركان حرة البرك، الشكل ١٢ ـ د.

البراكين المركبة تتكوّن البراكين المركبة تتكوّن البراكين المركبة volcano من تتابع طبقات اللابة والمقذوفات الصلبة، وتأخذ شكل جبال حادة الجوانب. إذ تثور هذه البراكين أحيانًا بقوة، فتخرج منها كميات كبيرة من الرماد والغاز، تُشكّل هذه المواد طبقة من المقذوفات الصلبة، يتبع ذلك ثوران هادئ للبركان مشكّلاً طبقة من اللابة، الشكل ١٢هـ. ومن البراكين المركّبة في المملكة العربية السعودية بركان جبل القدر شمال شرق المدينة المنورة، انظر الشكل ١٢هـو.

ثوران الشقوق تترشح الصهارة ذات السيولة العالية في هذا النوع من البراكين من شقوق في سطح الأرض. وتتميز اللابة في هذه البراكين بلزوجة قليلة، ممّا يعني أنّها تنساب بسهولة فوق الأرض لتكوّن انسيابًا بازلتيًّا. تشكّل الانسيابات البازلتية التي تعرضت للتعرية منذ ملايين السنين مناطق منبسطة وواسعة تُسمّى الهضاب البازلتية، انظر الشكل ١٢ ـ ز. ومن أشهر الأمثلة على هذا النوع من البراكين في المملكة العربية السعودية ما يعرف بالحرات، ومنها حرة رهط.

الجدول ٢ سبعة ثورانات تم اختيارها عبر التاريخ					
نواتج الثوران	محتوى الغازات	محتوى السليكا	قوة الثوران	النوع	البركان (السنة)
غاز، حمم، رماد	مرتفع	مرتفع	مرتفعة	مرکب	كراكاتوا، إندونيسيا ١٨٨٣م
لابة، رماد، غاز	مرتفع	مرتفع	مرتضعة	مركب	كاتماي، الأسكا ١٩١٢م
غاز، حمم، رماد	منخفض	مرتفع	متوسطة	مخروط	باریکوتین، المکسیك ۱۹٤۳م
غاز، رماد	مرتفع	منخفض	متوسطة	مخروط	هيلجافيل، أيسلندا ١٩٧٣م
غاز، رماد	مرتفع	مرتفع	مرتفعة	مرکب	هيلينز، واشنطن ١٩٨٠م
غاز، لابة	منخفض	منخفض	منخفضة	درع	كيلاوا، هاواي ١٩٨٩م
غاز، رماد، صخور	مرتفع	مرتفع	مرتضعة	مرکب	سوفرییر، مونترات ۱۹۹۵م

ثوران البركان الجوالي كراسة التجارب العملية

لقد قرأت عن بعض المتغيرات التي تحدّد نوع الثوران البركاني. ادرس الجدول ٢ جيدًا، حتى تتمكّن من تلخيص تلك العوامل. وسنتعلم في الدرس اللاحق العلاقة بين نوع الصهارة الناتجة وبين خصائص الصفائح الأرضية.

مراجعة ٢ الدرس

كيف تتشكّل البراكين؟

 تتكون بعض البراكين نتيجة خروج الصهارة من باطن الأرض إلى السطح.

الخلاصة

تتنوع المواد البركانية الناتجة عن ثوران البراكين
 بين مواد سائلة وصلبة وغازية.

أشكال البراكين

- تؤدي اللابة الغنية بالسليكا إلى تكون ثورانات متفجرة، بينما تؤدي اللابة التي تحتوي على نسبة قليلة من السليكا ونسبة عالية من الحديد والماغنسيوم إلى ثوران سائل.
- تؤثر كمية بخار الماء والغازات في طريقة ثوران
 البركان.
- تتضمن أنواع البراكين البراكين الدرعية، والبراكين المخروطية، والبراكين المركبة، وثوران الشقوق.

اختبر نفسك

- 1. حدّ أي أنواع ثورانات اللابة تغطي أكبر مساحة من سطح الأرض؟
 - ٢. صف المخاطر الناتجة عن البراكين.
- ٣. اشرح لماذا تكون جوانب البركان المخروطي
 حادة؟
- اذكر أنواع المواد التي تتكون منها البراكين المركبة.
- التفكيرالناقد لماذا تتفجر الصهارة الغنية بالسليكا؟

تطبيق الرياضيات

7. حلّ معادلة بسيطة يرتفع بركان حرة ثنيان معادلة بسيطة البحر، ويرتفع بركان حرة البحرة البركان حرة البرك إلى ٣٨١ م. كم مرة يساوي ارتفاعُ بركان حرة ثنيان ارتفاعَ بركان حرة البرك؟

www.obeikaneducation.com: لعل المواقع الالكترونية لزيد من الاختبارات القصيرة ارجع إلى الموقع الإلكتروني

الصفائح الأرضية وعلاقتها بالزلازل والبراكين

في هذا الدرس

الأهداف

- توضح علاقة مواقع البراكين ومراكز الزلازل السطحية بحدود الصفائح.
- تشرح كيف تسبب الحرارة في باطن الأرض حركة الصفائح.

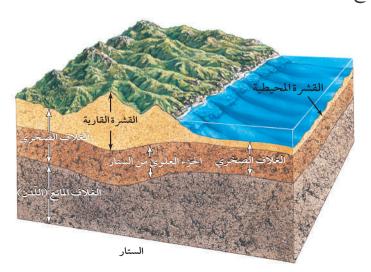
الأهمية

توضح نظرية الصفائح التكتونية كيف تتشكل الكثير من المعالم الأرضية، وتنتج عن حركتها معظم الزلازل والبراكين.

🤉 مراجعة المفردات

اللابة (الحمم) الصهارة المتدفقة على سطح الأرض.

المفردات الجديدة


- الغلاف الصخري الصفيحة
- الغلاف المائع حفرة الانهدام
 - البقعة الساخنة

الصفائح الأرضية

طوّر العلماء عام ١٩٦٠ م نظرية الصفائح الأرضية اعتمادًا على فرضيات سابقة وضعت لتفسير المعالم والأحداث الجيولوجية على سطح الأرض. وتنص نظرية الصفائح الأرضية على أن الغلاف الصخري Lithosphere المكون من القشرة الأرضية وأعلى الستار مقسم إلى قطع يسمى كل منها صفيحة Plate. تتحرك هذه القطع على طبقة لدنة من الستار تسمى الغلاف المائع Asthenosphere. وينتج عن هذه الحركة جميع المعالم والأحداث الجيولوجية، ومنها الزلازل والبراكين وتكوُّن الجبال وتشكُّل المحيطات.

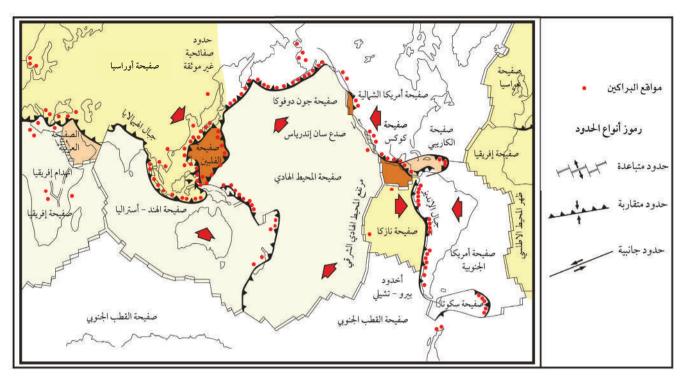
تركيب الصفائح الأرضية تتكون الصفائح الأرضية من القشرة الأرضية والجزء العلوي من الستار، كما يظهر في الشكل ١٣، وفي ما يعرف بالغلاف الصخري، وهو عبارة عن نطاق صلب سُمكه حوالي ١٠٠ كم. وكثافته غالبًا أقل من كثافة المواد التي تقع أسفل منه. وتطفو الصفائح الصلبة، وتتحرك فوق الغلاف المائع.

تقسم الصفائح الأرضية إلى صفائح محيطية تقع أسفل المحيط، وصفائح قارية تشكل القارات. وتتميز الصفائح المحيطية بأنها أكبر كثافة وأقل سمكًا من الصفائح القارية.

الشكل ١٣ تتكون صفائح الغلاف الصخري من القشرة القارية والقشرة القارية وأعلى الستار الصلب.

حدود الصفائح المتحركة

إذا حرّكت عددًا من الطاولات في غرفة الرياضة فقد تتصادم طاولتان أو ثلاث منها، كما في الشكل ١٤. ولكن ماذا يحدث لو استمرّ الطلاب في دفع الطاولات المتصادمة؟ قد تتسبب طاولة في إيقاف طاولة أخرى عن الحركة. لكن إذا دفع أحد الطلاب بقوة كافية فإنّ الطاولات سينزلق بعضها بجانب بعض، وقد تنزلق إحدى الطاولات فوق طاولة أخرى.


إنّ حركة الطاولات وإمكان تصادم بعضها ببعض تشبه حركة قطع الغلاف الصخري المكون من القشرة الأرضية وأعلى الستار، والتي تسمى الصفائح.

وتسمى الحدود الفاصلة بين هذه الصفائح حدود الصفائح وهي تصنف اعتمادًا على حركة الصفائح الأرضية إلى حدود تقارب، وحدود تباعد، وحدود جانبية (تحويلية). فإذا تحركت الصفائح بعضها نحو بعض فتقاربت أو تصادمت سميت حدودًا متقاربة. أما إذا ابتعد بعضها عن بعض فتسمى حدودًا متباعدة. وتسمى حدودًا جانبية إذا تحركت الصفائح أو انزلق بعضها بمحاذاة بعض. وينجم عن حركة الصفائح الزلازل و البراكين.

ما أنواع حدود الصفائح؟

الشكل ١٥ يتكون الغلاف الصخري للأرض من ١٣ صفيحة رئيسة. وتنتج نشاطاتٌ جيولوجية مهمة عن تقارب الصفائح وتباعدها وانزلاق بعضها بمحاذاة بعض عند حدود الصفائح.

أين تتشكّل البراكين؟

عند دراسة مواقع البراكين ومواقع حدود الصفائح على سطح الأرض نلاحظ أن معظم البراكين تتكوّن على حدود الصفائح. ادرس الشكل ١٥. هل يمكن ملاحظة العلاقة بين النشاطات البركانية والصفائح الأرضية؟ قد تكون الطاقة المخزّنة في الصفائح الأرضية سببًا في تكوُّن الصهارة في باطن الأرض. وتفسر حركة الصفائح عادةً سبب تكوّن البراكين في أماكن محدّدة.

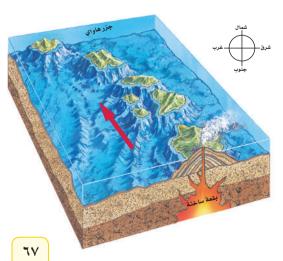
حدود الصفائح المتباعدة تتحرّك الصفائح مبتعدًا بعضها عن بعض في أماكن الحدود المتباعدة، ومع تباعد الصفائح تتكوّن شقوق طويلة بينها، تُسمّى حفر الانهدام شقوقًا تُمثّل ممرات تُسهّل خروج السهارة التي نشأت في الستار. وتعدّ مناطق حفر الانهدام مثالاً على معظم المناطق التي تتدفق فيها اللابة على سطح الأرض. ويحدث ثوران الشقوق غالبًا على امتداد مناطق حفر الانهدام ، مثل حفرة الانهدام الافريقي العظيم، حيث تبرد اللابة وتتصلب مكوّنة البازلت، وهو أكثر الصخور وفرة في القشرة المحيطية. ومن أشكال البراكين التي تتشكل في مناطق حدود الصفائح المتباعدة البراكين التي تشكل في مناطق حدود الصفائح المتباعدة البراكين الدرعية.

من أين تنشأ الصهارة على امتداد الحدود المتباعدة؟

حدود الصفائح المتقاربة من الأماكن الشائعة لتكوّن البراكين أماكنُ الحدود المتقاربة؛ إذ تغوص الصفيحة المحيطية التي كثافتها أكبر أسفلَ الصفيحة الأخرى، فتتشكّل البراكينُ تحت هذه الظروف. ومن أشكال البراكين التي تتكون عند هذه الحدود البراكينُ المركبة.

فعند غوص صفيحة محيطية أسفل صفيحة أخرى ينزل البازلت والرسوبيات التي تغطي قشرة المحيط إلى الستار، فتقلّل كميةُ المياه الموجودة في الرسوبيات والبازلت درجة انصهار الصخور المحيطة، وتؤدي حرارة الستار عندها إلى صهر جزء من الصفيحة الغاطسة والصخور التي تعلوها، مكوّنة الصهارة. تصعد هذه الصهارة إلى أعلى مكونة براكين على السطح. وتتكون جميع البراكين التي تحيط بالمحيط الهادي بهذه الطريقة، حيث تغوص صفيحة المحيط الهادي أسفل الصفائح الأخرى. ويُسمّى حزام البراكين الذي يحيط بالمحيط الهادي بالحزام الناري للمحيط الهادي، كما هو موضح في الشكل ١٥٠.

البقع الساخنة تُعدّ جزر هاواي مثالاً على الجزر البركانية. ولم تتكوّن هذه الجزر على حدود الصفائح، وإنّما في وسط صفيحة المحيط الهادي. فما العمليات التي أدّت إلى تشكلها؟ تُجبَر كتل كبيرة من الصهارة - تُسمى البقع الساخنة Hot spots على الصعود إلى أعلى، خلال الستار والقشرة، كما في الشكل ٦٦. يعتقد العلماء أنّ ذلك ما يحدث للبقعة الساخنة الموجودة حاليًّا أسفل جزيرة هاواي.


الساخنة؟ ماذا يقصد بالبقعة الساخنة؟

تتكوّن البراكين على سطح الأرض عادة في مناطق الانهدام، وفوق البقع الساخنة وحيث تغوص الصفائح بعضها أسفل بعض (مناطق الطرح). وتصعد الصهارة من هذه المناطق من أعماق الأرض إلى السطح في كل مكان، فتنساب اللابة على السطح، وتتراكم مع الزمن على شكل طبقات، أو تكوِّن مخروطًا بركانيًّا.

درجة الانصهار

تعرف درجة انصهار المادّة أنّها درجة الحرارة التي تتحوّل عندها المادّة من صلبة إلى سائلة. وتعتمد درجة حرارة انصهار المادة على الضغط؛ إذ يؤدي اختلاف الضغط إلى رفع درجة الانصهار أو خفضها حسب نوع المادّة. ابحث في تأثير انخفاض الضغط في تكوّن الصهارة في مناطق التباعد.

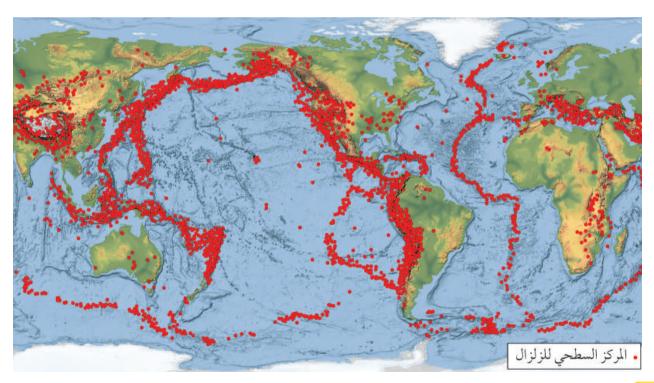
الشكل ١٦ تشكّلت جزر هاواي وما زالت تتشكّل نتيجة حركة صفيحة المحيط الهادي فوق بقعة ساخنة. يوضح السهم أنّ صفيحة المحيط الهادي تتحرّك نحو الشمال والشمال الغربي.

الربط مع

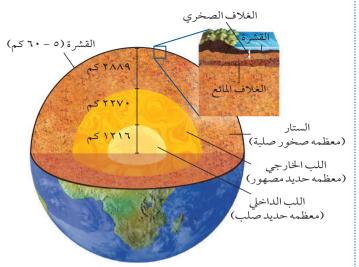
الاحتكاك قوة إعاقة تنشأ بين جسمين، وتؤثر في عكس اتجاه الحركة.

ابحث عن الاستخدامات المختلفة لكلمة "الاحتكاك" في اللغة.

حركة الصفائح تسبب الزلازل


ضع دفترين على طاولة، على أن تكون حواف الصفحات بعضها مقابل بعض، ثم ادفع الدفترين أحدهما نحو الآخر ببطء. ستلاحظ أنّ الأوراق بدأت تنثني نحو الأعلى بسبب الدفع. وإذا استمرت عملية الدفع فإنّ أحد الدفترين سينزلق أسفل الآخر فجأة، وتتحرر الطاقة وهذا يشبه ما يحدث عند حدوث الزلزال.

الآن، تخيل ما يحدث إذا تحركت الصفائح مثل حركة الدفترين. ماذا يحدث إذا تصادمت الصفائح بعضها ببعض، وتوقفت عن الحركة؟ إنّ القوى المتولدة في الصفائح العالقة ستؤدي إلى تكوُّن إجهادات. قد تتشوه حواف الصفيحتين في أماكن التقائها، وعند تجاوز حدّ المرونة ستنكسر الصخور، ويحدث ارتداد مرن للصخر، فتتولد اهتزازات، هذه الاهتزازات هي الزلازل.


وتحدث الزلازل غالبًا عند حدود التقارب، أو عندما تبتعد الصفائح بعضها عن بعض عند حدود التباعد، أو عندما تتحرك الصفائح بعضها بمحاذاة بعض عند حدود التحول (الحدود الجانبية).

مواقع الزلازل إذا نظرت إلى خريطة زلزالية فستلاحظ أنّ معظم الزلازل تتركز في صورة أحزمة مميزة؛ حيث يتركز ٨٠٪ من الـزلازل على طول حزام المحيط الهادي الناري، وهو حزام البراكين نفسه. وإذا قارنت بين الشكل ١٥ والشكل ١٧ فستلاحظ العلاقة بين المواقع السطحية للزلازل وحدود الصفائح. وتنتج عن حركة الصفائح قوًى تعمل على توليد الطاقة المسببة للزلازل.

الشكل ۱۷ خريطة تمثّل مواقع الزلازل التي حدثت بين عامي ۱۹۹۰-۲۰۰۰ م.

صفائح الأرض وباطنها لقد توصل العلماء إلى معرفة الكثير عن باطن الأرض والصفائح الأرضية من خلال دراسة الموجات الزلزالية. تعتمد الكيفية التي تنتقل بها الموجات الزلزالية خلال المواد على خصائص تلك المواد التي تمر من خلالها. إنّ دراسة الموجات الزلزالية ومعرفة سرعتها عبر المواد المختلفة، وكيفية انتقالها في طبقات الأرض مكّنت العلماء من رسم المناطق الرئيسة للأرض، كما في الشكل ١٨. فقد تم مثلًا اكتشاف الغلاف المائع (اللّدن) عندما لاحظ العلماء أنّ سرعة الموجات الزلزالية تنخفض عندما تتخطى قاع الغلاف الموجات الزلزالية تنخفض عندما تتخطى قاع الغلاف الصخري، وتشكّل هذه الطبقة المنصهرة جزئيًّا طبقة أكثر الباردة فوقها.

الشكل ١٨ لقد مكّنت الموجات الزلزالية المتولدة من الزلازل العلماء من معرفة تركيب ومكونات باطن الأرض.

حات P

تطبيق الرياضيات

زمن وصول موجات P تختلف سرعة موجات P. تبعًا لكثافة الوسط الذي تنتقل خلاله في باطن الأرض. كيف يمكنك حساب الزمن الذي تستغرقه موجات P للانتقال عبر ١٠٠ كم من قشرة الأرض؟

الحلّ:

- 1 المعطيات
- ۲ المطلوب
- ٣ طريقة الحل
- التحقّق من الحل

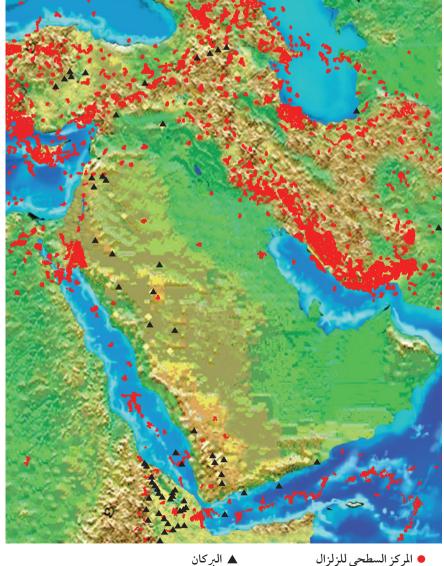
الكثافة وسرعة الموجات				
سرعة موجان	الكثافة	الوسط		
٦ کم/ث	۲٫۸ جم/سم	القشرة		
۸ کم/ث	۳,۳ جم/سم	الستار العلوي		

- السرعة = ٦ كم/ث
- المسافة = ١٠٠ كم
- كم تستغرق موجات P حتى تعبر المسافة؟
- الزمن = $\frac{|lower=lbw|}{|lower=lbw|}$ الزمن = $\frac{|lower=lbw|}{|lower=lbw|}$ الزمن = $\frac{|lower=lbw|}{|lower=lbw|}$
- السرعة = $\frac{|lower=lbw|}{|lower=lbw|}$ = ۲ کم |lower=lbw|

مسائل تدريبية

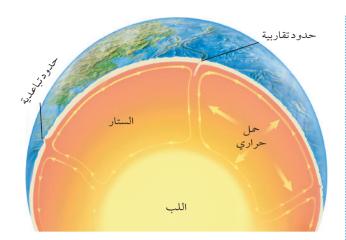
- 1. احسب الزمن الذي تستغرقه موجات P للانتقال مسافة ٣٠٠ كم في الستار العلوي.
 - ٢. ما الزمن الذي تستغرقه موجات P للانتقال ٥٠٠ كم في القشرة؟

لمراجعة التدريبات ارجع إلى الموقع الإلكتروني www.obeikaneducation.com


العلـــوم ﴿ عبر المواقع الإلكترونية

يتركز تأثير حركة الصفائح الأرضية في المملكة العربية السعودية حول حواف الصفيحة العربية، الشكل ١٩؛ حيث تتحرك الصفيحة العربية بشكل دوراني في اتجاه الشمال الشرقي، لذا فإن حدوث الزلازل والبراكين مرتبط مع هذه الحواف. ويتركز النشاط الزلزالي في المملكة العربية السعودية على امتداد البحر الأحمر وحتى خليج العقبة، حيث تمثل هذه المناطق حدود تباعد بين الصفيحة العربية والصفيحة الإفريقية، كما أن هناك بعض النشاط الزلزالي حول بعض الحرات البركانية.

أما النشاط البركاني فيرتبط عادة مع حركة الصفيحة العربية. لذا فإن النشاط البركاني في المملكة يتركز في الجهة الغربية على امتداد ساحل البحر الأحمر؟ حيث تمثل حدود الصفيحة العربية مع الصفيحة الإفريقية. ويوجد في المملكة ١٢ حرة بركانية، من أهمها حرة رهط بالمدينة المنورة، وحرة الشاقة.


٧ ماذا قرأت؟ ما حدود الصفائح المحيطة بالصفيحة العربية؟

الشكل ١٩ توزع الزلازل والبراكين على حدود الصفيحة العربية.

• المركز السطحى للزلزال

ما الدني يحرك الصفائح؟ هناك العديد من الفرضيات حول مصدر الطاقة المحرّكة للصفائح. تنصّ إحداها على أنّ مادّة الستاريتم تسخينها بوساطة لب الأرض، فتقلّ كثافتها، وتصعد إلى أعلى، ثم تبرد هذه المادّة، فتنزل إلى أسفل في اتجاه اللّب، مكوّنة تيارات الحمل. تقدّم تيارات الحمل الحراري في باطن الأرض كما هو موضح في الشكل ٢٠ – تفسيرًا لحركة الصفائح الأرضية، والتي توفّر ظروفًا لتشكّل البراكين والزلازل حيث. تصعد الصهارة في بعض الأحيان في وسط الصفيحة؛ نتيجة وجود بقعة ساخنة في الستار. وقد تنتج البقع الساخنة عن تيارات حمل ضخمة في الستار.

الشكل ٢٠ تيارات الحمل في باطن الأرض تؤدي إلى تحريك الصفائح.

مراجعة ٣ الدرس

الخلاصة

حدود الصفائح المتحركة

ينقسم غلاف الأرض الصخري إلى قطع تُسمّى
 صفائح، يتحرك بعضها بالنسبة إلى بعض.

أين تتشكل البراكين؟

- تتحرك الصفائح مبتعدة عن بعضها عند الحدود
 المتباعدة مكونة ثورانًا بركانيًا بين الشقوق.
 - تتصادم الصفائح عند حدود الصفائح المتقاربة.
- يتشكل الكثير من البراكين عند حدود الصفائح
 المتقاربة.
- قد تتشكّل البراكين على امتداد حفر الانهدام وفوق البقع الساخنة، وحيث تغوص الصفائح بعضها أسفل بعض.

حركة الصفائح تسبب الزلازل

- تحدث الزلازل عادة على حدود الصفائح.
- يستضاد من الموجات الزلزالية في معرفة خصائص باطن الأرض.
 - قد تؤدي تيارات الحمل إلى تحريك الصفائح.

اختبر نفسك

- ١. حدد ما نوع حدود الصفائح التي تشكّل عندها بركان حرة رهط؟
- ٢. توقع. على أيّ نوع من حدود الصفائح يحدث نشاط بركاني مصاحب لحفر الانهدام؟
 - ٣. اشرح كيف تكوّنت براكين هاواي؟
- السبب والنتيجة. لماذا تكون الـزلازل ذات البؤر العميقة مصاحبة للحدود المتقاربة؟
- •. التفكير الناقد. عندما تغطس صفيحة أسفل صفيحة أخرى عند حدود التقارب تنزل الرسوبيات الغنية بالماء والبازلت إلى أعهاق كبيرة في الستار. اشرح كيف تساعد المياه على تكون البراكين؟

تطبيق المهارات

7. تكوّين فرضية. لاختبار نوع اللابة التي يمكن أن تشكّل بركان البقع الساخنة. اعتبر أنّ الصهارة في بركان البقع الساخنة تنتج عن مناطق عميقة داخل الستار الأرضى.

الموجات الزلزالية

الأهداف

- **توضّح** حركة الموجات الأولية والثانوية والسطحية.
- تحدّد كيف تتحرك أجزاء النابض في أثناء كلّ موجة.

المواد والأدوات

- نابض حلزوني
- مسطرة مترية
- خيط قطن (أو صوف)

إجراءات السلامة

🔇 سؤال من واقع الحياة

إذا أمسكت بطرف حبل وأمسك زميلك بالطرف الآخر، ثم بدأ أحدكما يهز طرف الحبل إلى الأمام والخلف فإنّه بذلك يرسل موجة عبر الحبل على امتداد

طوله. ضع مسطرة على حافة الطاولة، على أن يكون أقلّ من نصفها خارج الطاولة. إذا ثبّتً المسطرة وثنيت طرفها الحرّ قليلًا ثم تركته فجأة فماذا تلاحظ؟ وما علاقة ما شاهدته في الحبل وما لاحظته على المسطرة بموجات الزلازل؟ وكيف تختلف موجات الزلازل؟

🚺 الخطوات

- ١٠ انسخ الجدول أدناه في دفتر العلوم.
- ٠٢ اربط خيطًا صغيرًا عند كلّ ١٠ لفات من النابض.
- ٣. ضع النابض على سطح مستو ناعم، ثم شُدّه حتى يصبح طوله مترين (إذا كان النابض صغيراً فشُدَّه حتى يصبح طوله مترًا واحدًا).
- **3.** أمسك نهاية النابض القريبة منك جيدًا، ثم اطلب إلى زميلك أن يحدث موجة بهزّ الطرف الذي بيده بسرعة من جانب إلى آخر.
- •. دوّن ملاحظاتك في دفتر العلوم، وارسم في الجدول الموجة التي ولَّدْتَها أنت و زميلك.
- **.** اطلب إلى زميلك أن يثبت طرف النابض من جهته جيدًا، ثم ولّد موجة بدفع الطرف الذي بيدك إلى الأمام والخلف على صورة نبضة.

مقارنة الموجات الزلزالية					
نوع الموجة	الرسم	ملاحظة الخيط	ملاحظة الموجة		

استخدام الطرائق العلمية

- ٧. دوّن ملاحظاتك عن الموجات والخيط والنابض، وارسم الموجة في الجدول.
- دع زميلك يثبت طرف النابض جيدًا، وحرّك الطرف الثاني من اليمين إلى اليسار بحركة دورانية: أولاً إلى أعلى ومبتعدًا عن زميلك، ثم إلى الأسفل ومقتربًا من زميلك.
 - . وقن ملاحظاتك، وارسم الموجة الناتجة في جدول البيانات.

🔕 الاستنتاج والتطبيق

- 1. في ضوء ما لاحظته، حدد أيّ الموجات التي وَلَّدْتها أنت وزميلك تمثل موجة أولية ودوّن ملاحظاتك في جدول البيانات، ثم وضّح سبب اختيارك.
 - ٢. كرر ما سبق بالنسبة إلى الموجات الثانوية، ثم وضّح لماذا اخترت هذه الموجة؟
- وضّح معتمدًا على ملاحظاتك حول حركة الموجات، أيّ الموجات التي قمت أنت وزميلك بتوليدها تسبب دمارًا أكبر خلال الزلازل؟
 - ٤. لاحظ ما الغرض من استخدام الخيط؟
- قارن بيِّن حركة الخيط في أثناء انتقال الموجة الأولية والموجة الثانوية خلال النابض. أيَّها تمثل موجات تضاغطية؟ وضَّح إجابتك.
- **٦.** قارن. أيّ موجة تشبه أكثر الموجات التي تتكون في الماء؟ وما الاختلاف بينهما؟ وضّح إجابتك.

العلم والتاريخ

الزازال

تَعلَّم الناسى من زلزال سان فرانسيسكو عام ١٩٠٦م درسًا لاينسى.

إلى تطوير المباني ووضع معايير للبناء لضمان سلامة الناس إذا حدث زلزال في المستقبل.

لقد حُلّلت الموجات الزلزالية باستخدام الحواسيب، ممّا ساعد على تحديد موقع صدع سان إندرياس التحولي الذي تحدُث عليه معظم الزلازل في كاليفورنيا. وتساعد هذه المعلومات على معرفة الوقت الذي سيضرب فيه الزلزال، والكيفية التي يضرب بها. كما تمّ وضع قوانين تحدّد مواقع المستشفيات، والمفاعلات النووية والمنازل، بعيدًا عن الأراضي اللينة وصدع سان إندرياس.

لقّن زلزال سان فرانسيسكو عام ١٩٠٦ م الناسَ دروسًا قيمة؛ فقد ضرب الزلزال المنطقة دون تحذير. وصف أحد الناجين الزلزال بقوله: "لقد أخذنا في الاهتزاز، وأصبحت الأرض تنزلق من تحت أقدامنا ببطء، ثم بدأت الاهتزازات العنيفة التي ألقتنا على وجوهنا، فهربنا إلى الشوارع، ولم نستطع الوقوف، وأحسسنا أنّ رؤوسنا قد انقسمت نصفين بسبب موت الاهتزاز. لقد انهارت المباني الكبيرة، وكأنك تكسر قطعة من البسكويت". لقد وقع هذا الزلزال في تكسر قطعة من البسكويت". لقد وقع هذا الزلزال في في الأرض حفرة امتدادها ٤٣٠ كم. وكانت النتيجة كارثة من أكبر الكوارث الطبيعية في تاريخ أمريكا.

لقد أدّى سقوط المداخن إلى إشعال النيران، التي عمل على زيادتها الغاز المتسرب من الأنابيب الرئيسة مدّة ثلاثة أيام، وعلى الرغم من أنّ الكارثة أدّت إلى قتل ٣٠٠٠ شخص وإلحاق الدمار بمدينة سان فرانسيسكو إلاّ أنّه كان للزلزال أثر إيجابي؛ فقد أدّى

مقابلة صمم مقابلة تجريها مع شخص ما عاصر أحد الزلازل، ضمّن مقابلتك الأسئلة التالية: ماذا كنت تفعل في أثناء حدوث الزلزال؟ ما الذي بدأ يحدث حولك؟ ماذا سمعت؟ وماذا رأيت؟ لخص ما وجدته في المقابلة.

العلوم عبر المواقع الإلكترونية ارجع إلى المواقع الإلكترونية عبر شبكة الإنترنت.

مراجعـة الأفكار الرئيسـة

الدرس الأول الزلازل

- 1. تحدث الزلازل عندما تتجاوز الإجهادات التي تتعرض لها الصخور التي في باطن الأرض حدّ المرونة وتنكسر، ويحدث الارتداد المرن.
- ۲. الموجات الزلز الية اهتزازات داخل الأرض. تنتشر الموجات
 Pو S مبتعدة عن بؤرة الزلز ال في جميع الاتجاهات، بينما
 تنتشر الموجات السطحية على امتداد السطح.
- ٣. يتم قياس الـزلازل بقوتها (مقـدار الطاقـة المتحررة)،
 وشدتها (مقدار الدمار الذي تحدثه).

الدرس الثاني البراكين

١. جبل القدر بركان مركّب، تشكل شمال شرق المدنية المنورة.

- تعتمد طريقة ثوران البركان على تركيب اللابة، ومقدار بخار الماء والغازات فيها.
- ٣. هناك ثلاثة أنواع من البراكين، هي البراكين الدرعية، والبراكين المخروطية، والبراكين المركّبة.

الدرس الثالث الصفائح الأرضية وعلاقتها بالزلازل والبراكين

- ١. ترتبط مواقع البراكين ومراكز الزلازل بحدود الصفائح.
- ٢. تتكوّن البراكين على طول حفر الانهدام ومناطق الطرح والبقع الساخنة.
- ٣. معظم الزلازل تتكوّن عند حدود الصفائح المتقاربة والمتباعدة والجانبية.

تصور الأفكار الرئيسة

انقل الجدول التالي إلى دفترك، ثم أكمله بالمقارنة بين أنواع البراكين الثلاثة.

البراكين						
البركان المركب	البركان المخروطي	البركان الدرعي	الخصائص			
		كبير	الحجم النسبي			
متوسط إلى مرتفع			طبيعة الثوران			
	حمم، غاز	لابة، غاز	المواد المنبعثة			
سليكا مرتفعة			تركيب الملابة			
متغيرة	منخفضة		انسياب (لزوجة) اللابة			

17. أيّ أنواع البراكين التالية يتكوّن من تعاقب طفوح من اللابة والمقذوفات البركانية:

أ. الدرعية ج. المخروطية

ن. قبة اللابةد. المركبة

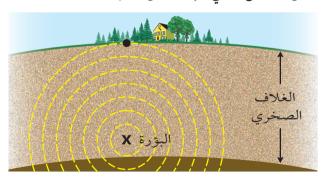
17. أيّ أنواع البراكين التالية صغير الحجم وحوافه شديدة الانحدار:

أ. الدرعية ج. المخروطية

ب. قبة اللابة د. المركبة

11. أيّ الموجات الزلزالية الآتية ينتقل في الأرض بسرعة أكبر؟

أ. الموجات الأولية ج. الموجات السطحية


ب. الموجات الثانوية د. تسونامي

١٠. أيّ ممّا يلي موجات مائية تكوّنت بفعل حدوث زلزال
 تحت المحيط؟

أ. الموجات الأولية ج. الموجات السطحية

ب. الموجات الثانوية د. تسونامي

استعن بالشكل التالى للإجابة عن السؤال ١٦

17. نقطة على سطح الأرض تقع مباشرة فوق بؤرة الزلزال، هذه النقطة تُسمى:

أ. مركز الزلزال ج. الصدع

ب. المركز السطحى د. البؤرة

استخدام المفردات

ما الفرق بين كل مصطلحين من المصطلحات الآتية:

١. الصدع والزلزال.

٢. البراكين الدرعية والبراكين المركبة.

٣. بؤرة الزلزال ومركزه السطحي.

٤. الموجات الزلزالية وجهاز الرصد الزلزالي.

موجات التسونامي والموجات الزلزالية.

٦. المركز السطحي للزلزال والزلزال.

٧. البراكين المخروطية والبراكين الدرعية.

تثبيت المفاهيم

اختر الإجابة الصحيحة في كل مما يلي:

٨. أيّ أنواع حركات حدود الصفائح التالية كوّنت بركان ليمار الدرعي؟

أ. المتباعدة ج. الجانبية

ب. الانهدام د. المتقاربة

أي مما يلي يُعد من أكبر أنواع البراكين، وذو امتداد واسع، وجوانبه قليلة الانحدار.

أ. البراكين الدرعية ج. البراكين المخروطية

ب. البراكين المركبة د. قبة اللابة

١٠. ما سبب تكوّن براكين جزر هاواي؟

أ. منطقة الانهدام

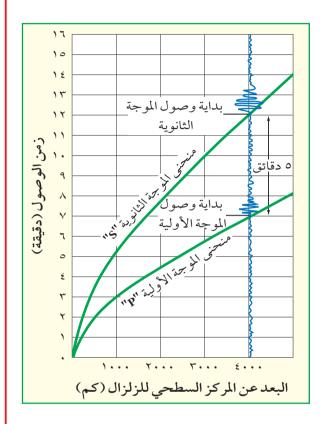
ب. البقعة الساخنة

ج. حدود الصفائح المتباعدة

د. حدود الصفائح المتقاربة

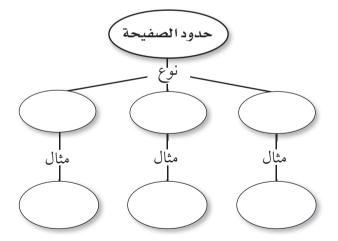
١١. أيّ أنواع اللابة التالية تنساب بسهولة:

أ. الغنية بالسليكا ج. المركبة


ب. البازلتية د. الناعمة

مراجعة الفصل

تطبيق الرياضيات


استعن بالرسم التالي للإجابة عن السؤالين ٢٦، ٢٧.

- الأولية إلى جهاز الرصد الزلزالي عند الساعة ٢٠:٩ الأولية إلى جهاز الرصد الزلزالي عند الساعة ٢٠:٩ صباحًا، ووصلت الموجات الثانوية إلى الجهاز نفسه عند الساعة ٢٠:٩ صباحًا، فما بُعد محطة الرصد عن المركز السطحي للزلزال؟
- ۲۷. زمن الوصول إذا كان البعد بين محطة الرصد الزلزالي والمركز السطحي للزلزال ۲۵۰۰ كم، فما الفرق في الزمن بين وصول موجات "S"، ووصول موجات "P" إليه؟

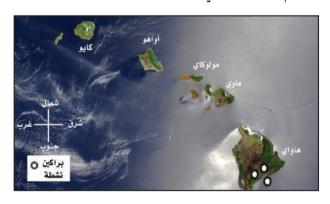
التفكيرالناقد

- ١٧. استنتج. لماذا تثور بعض أنواع البراكين بشكل متفجر؟
 - ١٨. قارن بين البراكين المركبة والبراكين المخروطية.
- 14. اشرح. كيف يؤثر تركيب الصهارة في كيفية ثوران البركان؟
- ٢. قوم. ما العوامل التي تحدد شدة الزلزال على مقياس ميركالي؟
 - ٢١. قارن بين قوة الزلزال وشدته.
- ٢٢. اصنع نموذ جًا. اختر أحد أنواع البراكين، واعمل نموذجًا يحاكيه.
- ٢٣. استخلص النتائج. افترض أنك تحلق فوق منطقة ضربها زلزال، فلاحظت أنّ معظم المباني مدمرة، وعدة أشياء مبعثرة، فما درجة الشدة التي تستنتجها لهذا الزلزال؟
- **٢٤. الخريطة المفاهيمية.** أعد رسم خريطة المفاهيم الآتية حول حدود الصفائح الأرضية، ثم أكملها.

أنشطة تقويم الأداء

. ٢٥. عرض تقديمي: ابحث عن زلازل أو براكين حدثت في منطقتك، أو في منطقة أخرى اعرف متى حدث آخر زلزال أو بركان فيها. اعرض ما توصلت إليه على زملائك.

اختبار مقنن

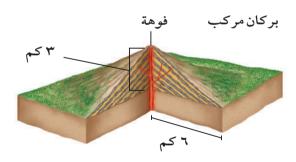


الجزء الأول: أسئلة الاختيار من متعدد

- 1. ما الخطوة الأولى التي يجب أن يقوم بها الباحث قبل البدء باستقصائه حول مشكلة ما؟
- أ. تحليل البيانات ج. جمع المعلومات
 ب. التحكم بالمتغيرات د. التوصل إلى الاستنتاج
- ٢. أيّ مما يلي يعد مصدرًا جيدًا للمعلومات عن مرض
 بكتيري حدث محليًا قبل مئات السنين؟
 - أ. الصور ج. الإنترنتب.التلفاز د. الصحف
 - ٣. العامل الذي يتم قياسه خلال التجربة هو:
 - أ. الفرضية ج. المتغير المستقل
 ب. المتغير التابع د. العينة الضابطة
- الاسم الذي يطلق على البحث العلمي والذي يعتمد الملاحظة للإجابة عن الأسئلة؟
 - أ. البحث الوصفي ج. البحث التجريبي
 ب. البحث التقني د. البحث التحليلي
- ما نوع البحث الذي يجيب عن الأسئلة العلمية باختبار الفرضية؟
 - أ. البحث الوصفي ج. البحث التجريبي
 ب. البحث التحليلي د. البحث التقني
- تتكون البراكين المركبة عند حدود التقارب. أيُّ الصفائح الآتية يكون معظم البراكين التي تحيط بها براكين مركبة؟
 - أ. الهادي ج. المتجمد الجنوبيب. أوراسيا د. الهند-أستراليا

- ٧. أيّ ممّا يلي يصف الصَدْع؟
- أ. نقطة على سطح الأرض تقع مباشرة فوق بؤرة الزلزال.
 - ب. نقطة داخل الأرض بدأت عندها الإزاحة في أثناء حدوث الزلزال.
 - ج. سطح تنكسر عليه الصخور وتحدث على امتداده إزاحة.
 - د. عودة الصخر إلى وضعه الأصلي بعد تعرضه لإجهاد ما.
- ٨. تُسمّى الموجات التي يولدها الزلزال وتمرّ بباطن الأرض وعلى السطح:
 - أ. موجات الصوت ج. موجات الماء
 ب. موجات الضوء د. موجات زلزالية
 - ٩. ترافق البراكين جميع المناطق التالية ما عدا:
 أ. منطقة الانهدام ج. المراكز السطحية
 ب. مناطق غطس الصفائح د. البقع الساخنة

استخدم الشكل التالي للإجابة عن السؤالين ١١،١٠.



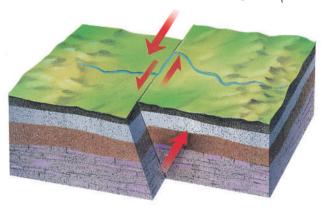
- ١٠. في أيّ اتجاه تتحرّك صفيحة المحيط الهادي:
 - أ. شمال شمال غرب
 - ب. شمال شمال شرق
 - ج. جنوب جنوب غرب
 - د. جنوب جنوب شرق

(الجزء الثالث: أسئلة الإجابات المفتوحة

- ۲۲. بعض الناس ومنهم المزارعون ينتجون غذاء، بينما يستهلكه آخرون. ما فرضيتك لما يحدث إذا قرّر جميع المزارعين التوقف عن إنتاج الخضراوات؟ وهل هناك طريقة لتختبر فرضيتك؟
- ٢٣. قتل مرض الطاعون الأسود آلاف الناس في القرون الوسطى. وضّح كيف يمكنك الحصول على معلومات عن هذا المرض؟ وكيف انتشر؟ وهل ما زال موجودًا إلى الآن؟ وإذا كان كذلك فكيف يعالج؟
- ۲٤. كيف يمكنك أن تخبر العالم بملاحظات قمت بها حول دول فيها جفاف ومجاعات؟
- ٧٠. وضح العلاقة بين تيارات الحمل والصفائح الأرضية.
- ٢٦. قارن بين حدود الصفائح المتقاربة، وحدود الصفائح المتباعدة.

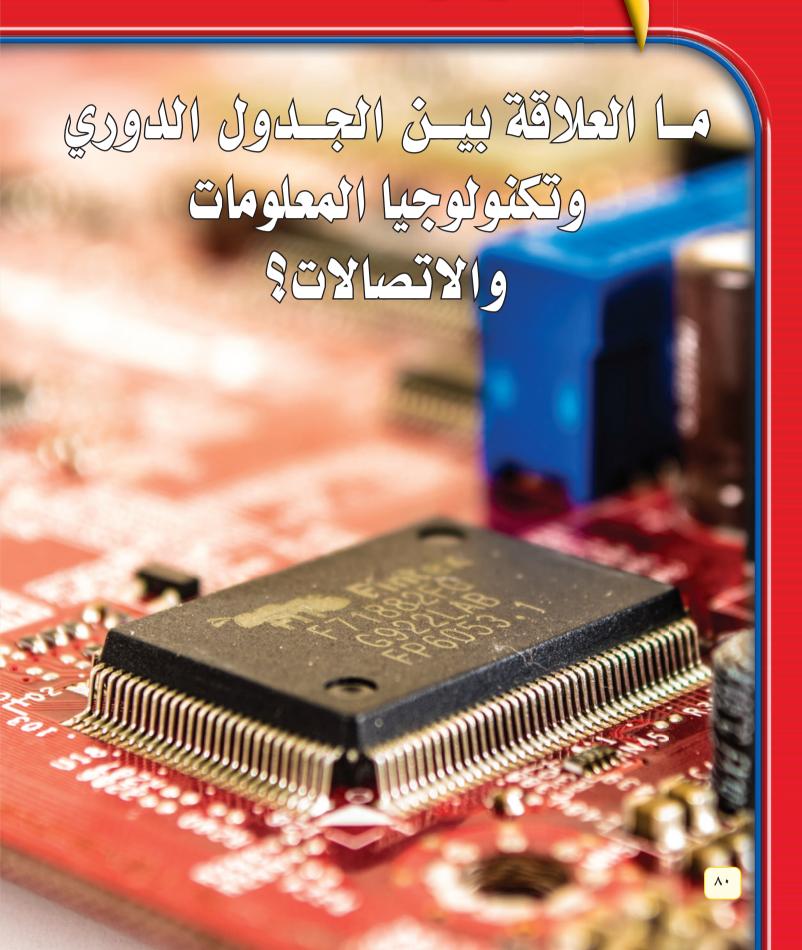
استخدم الشكل أدناه للإجابة عن السؤال ٢٧.

- ٧٧. ما نوع البركان الظاهر في الشكل؟ وضح كيف عرفت ذلك؟ وأين يتكون هذا النوع من البراكين؟
 - ٢٨. وضّح العلاقة بين الصدوع والزلازل.
- ٢٩. بعض الموجات السطحية تهتز من جانب إلى آخر، أو
 تتمايل بحركة موازية لسطح الأرض. لماذا يكون هذا
 النمط من الحركة هو الأكثر تدميرًا للمنشآت والمباني؟


١١. أيّ الجزر التالية أقدم:

أ. كايو ج. مولوكايب.مايو د. هاواي

الجزء الثاني: أسئلة الإجابات القصيرة


- 17. وضّح الخطوات الأساسية التي تتبعها عند حلّ مشكلة علمية.
 - ١٣. ما أهميّة تكرار التجربة أكثر من مرة؟
 - ١٤. ما العينة الضابطة؟
- 10. ما أهمية الحواسيب في النشاط العلمي؟ صف ثلاثة استخدامات للحاسوب في العلم.

استخدم الشكل أدناه للإجابة عن السؤالين ١٦ و ١٧.

- ١٦. حدّد نوع الصدع الذي يبينه الشكل أعلاه.
 - ١٧. اشرح كيف تكوّن هذا الصدع؟
- ١٨ . ما التسونامي؟ وما الذي يحدث عندما يدخل التسونامي
 مياهًا ضحلة؟
- 14. ما المقصود بالارتداد المرن؟ وكيف يرتبط مع كل من الاجهادات والزلازل؟
 - ٠٢٠. صف فوهة البركان. وأين تقع؟ وما شكلها؟
 - ٢١. ما السيز موجراف؟ وكيف يعمل؟

كيمياء المادة

14 **Si** 6.982 28.086 30.974 Gallium Germanium Arsenic 31 33 32 Ge As 69.723 72.64 74.922 Indium Tin Antimony 50 Sn 118.710

في عام 1869م توقع العالم مندليف وجود عنصر في الجدول الدوري يقع بين عنصري السليكون والقصدير سماه الجدول الدوري يقع بين عنصري السليكون والقصدير سماه ولاه وقدر أن كتلته الذرية تساوي 72 تقريبًا. وفي عام 1886م اكتشف العالم الألماني كليمنز وينكلر هذا العنصر وسماه جرمانيوم نسبة إلى بلده ألمانيا، وحدّد كتلته الذرية بـ 72,6. وهو عنصر شبه فلزي، يدخل في صناعة الإلكترونيات ومنها أجهزة الاتصالات اللاسلكية، حيث يستخدم في الدوائر الإلكترونية، والترانزستور، والثنائيات (الديود)، وفي الوقت الحاضر يستخدم بشكل كبير في صناعة الألياف البصرية المستخدمة في شبكات الاتصالات والإنترنت.

ارجع إلى الموقع الإلكتروني www.obeikaneducation.com أو أي مواقع أخرى للبحث عن فكرة أو موضوع مشروع يمكن أن تنفذه أنت.

من المشاريع المقترحة:

- المهن اكتب بحثًا عن طبيعة عمل فنيي الأشعة، وكيف يقضون يومهم، واحتياطات السلامة التي يطبقونها.
- التقنية ابحث حول أحد العناصر التي تدخل في صناعة الإلكترونيات، واكتب تقريرًا عن أهميتها، وكيفية استخدامها.
- النماذج صمّم نموذجًا للجدول الدوري مكوّنًا من علب صغيرة فارغة، على أن تضع داخلها بطاقات معلومات عن كلّ عنصر.

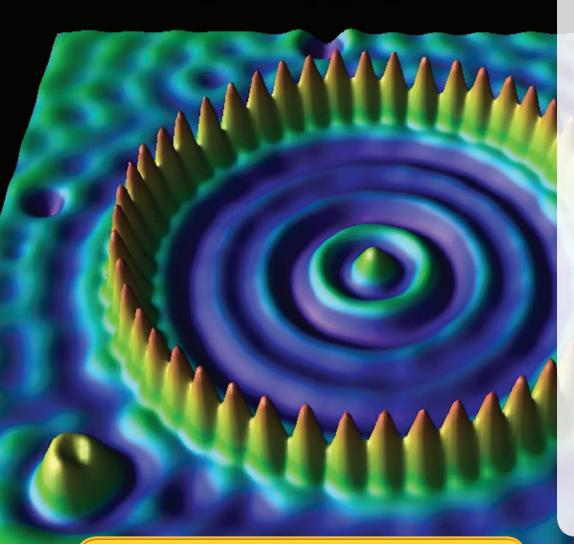
ببحث عبر الشبكة الالكترونية في جوانب الحياة المختلفة.

الفكرة العامة

كلّما توافر لدينا معلومات جديدة استطعنا تقديم نموذج للذرة أكثر تفصيلاً ودقة.

الدرس الأول

نماذج الذرة


الفكرة الرئيسة تحتوي السنرات على بروتونات ونيوترونات في نواة كثيفة وصغيرة جدًّا، وإلكترونات تدور في منطقة واسعة حول النواة.

الدرس الثانى

النواة

الفكرة الرئيسة النواة هي مركز الذرة. ويكون عدد البروتونات في نواة عنصر ما ثابتًا، أما عدد النيوترونات فقد يختلف.

تركيب الذرة

ياله من منظر جميل!

هـذه صورة لذرة نحاس محاطة بثمان وأربعين ذرة حديد. ما الذرات؟ وكيف اكتشفت؟ سنتعرف في هذا الفصل بعض العلماء، واكتشافاتهم الرائعة حول طبيعة الذرة.

صف الذّرة، في ضوء ما تعرفه عنها.

دفتر العلوم

نشاطات تمهيدية

نموذج لشيء لا يرى

هل سبق أن حصلت على هدية مغلّفة، وكنت تتلهف لفتحها؟ ماذا فعلت لتعرف ما بداخلها؟ إنّ الذرة تشبه _ إلى حدّ بعيد _ تلك الهدية المغلّفة؛ فأنت تريد استكشافها، ولكنّك لا تستطيع رؤيتها مباشرة أو بسهولة. 🗢 🔏 🚾

- سيعطيك معلمك قطعة من الصلصال وبعض القطع المعدنية. عد القطع المعدنية؟
- اغرس القطع المعدنية في قطعة الصلصال حتى تخفيها.
 - ٣. بدّل قطعتك الصلصالية بقطعة أحد زملائك.
- ٤. تحسّس الصلصال بعود (تنظيف أسنان) خشبي رفيع لكي تكتشف عدد القطع المعدنية التي بداخله وأشكالها.
- التفكير الناقد ارسم في دفتر العلوم أشكال القطع المعدنية كما تعرّفتها، ودوّن عددها، ثم قارن بين الرسم وبين عدد القطع المعدنية الموجودة فعلاً في الصلصال.

المطويات

منظمات الأفكار

أجزاء الندرة اعمل المطوية التالية لتساعدك على تنظيم أفكارك، ومراجعة مكونات الذرة.

الخطوة ١ ضع قطعتين من الورق إحداهما فوق

الأخرى وعلى مسافة ۲ سے من حافة الورقة الأولى.

الخطوة ٣ عنون الأشرطة ب: ذرة، إلكترون،

بروتون، نیوترون، كما في الشكل.

اقرأواكتب في أثناء قراءتك هذا الفصل؛ صف كيف تم اكتشاف كلِّ مكون من مكونات الذرة، ودوَّن الحقائق في أماكنها المناسبة في المطوية.

العلـــوم 🌑 عبر المواقع الإلكترونية

لمراجعة محتوي هذا الفصل وأنشطته ارجع إلى الموقع الإلكتروني www.obeikaneducation.com

أتهيأ للقراءة

تصورات ذهنية

- أَتُعَلَّم كُوِّن في أثناء قراءتك للنص تصورات ذهنية، وذلك بتخيل كيف تبدو لك أوصاف النص: صوت، أم شعور، أم رائحة، أم طعم. وابحث عن أي صور أو أشكال في الصفحة تساعدك على المزيد من الفهم.
- أتدرّب اقرأ الفقرة التالية، وركز على الأفكار البارزة في أثناء قراءتك لتشكّل لها صورة ذهنية في مخيلتك.

فللذرة في النموذج النووي للذرة نواة صغيرة جدًّا تحوي البروتونات الموجبة الشحنة والنيوترونات المتعادلة الشحنة، أمّا الإلكترونات سالبة الشحنة، فتشغل الحيّز المحيط بالنواة. وفي الذرة المتعادلة يتساوى عدد الإلكترونات مع عدد البروتونات. صفحة ٩٢.

حاول أن تتصور الذرة معتمدًا على الوصف السابق، ثم انظر بعد ذلك إلى الشكل ١٣ صفحة ٩٣ في الكتاب.

- ما حجم النواة؟
- كم بروتونًا في الذرة؟
- ما نوع شحنة كل من البروتون والإلكترون؟

أطبّق دوّن من خلال قراءتك لهذا الفصل ثلاثة مواضيع يمكنك تصورها، ثم ارسم مخطّطًا بسيطًا يوضّح ما تخيلته.

يساعدك التصور الذهني على تذكر ما تقرأ.

توجيه القراءة وتركيزها

ركز على الأفكار الرئيسة عند قراءتك الفصل باتباعك ما يلي:

- **قبل قراءة الفصل** أجب عن العبارات الواردة في ورقة العمل أدناه.
 - اكتب (م) إذا كنت موافقًا على العبارة.
 - اكتب (غ) إذا كنت غير موافق على العبارة.
- **②** بعد قواءة الفصل ارجع إلى هذه الصفحة لترى إن كنت قد غيّرت رأيك حول أي من هذه العبارات.
 - إذا غيرت إحدى الإجابات فبيّن السبب.
 - صحّح العبارات غير الصحيحة.
 - استرشد بالعبارات الصحيحة في أثناء دراستك.

بعد القراءة م أوغ	العبارة		قبل القراءة م أو غ
	درس الفلاسفة القدماء الذرة من خلال إجراء التجارب.	٠.١	
	بيّن العالم كروكس أن الشعاع الذي شاهده ما هو إلا ضوء؛ لأنّه كان ينحني بفعل قوة المغناطيس.		
	توقّع العالم رذرفورد أن ترتد جميع جسيمات ألفا عند اصطدامها بصفيحة الذهب.	۳.	
	تتكوّن الذرة في معظمها من فراغ.	٤.	
	ليس للنيوترونات شحنة كهربائية.	٠.٥	
	تتحرّك الإلكترونات في مسارات محدّدة تمامًا حول النواة.	٠٦	
	ذرات العنصر الواحد لها العدد نفسه من البروتونات والنيوترونات.	٠٧.	
	يمكن أن تتحوّل ذرات عنصر معين إلى ذرات عنصر آخر بفعل التحلّل الإشعاعي.	٠٨.	
	النظائر المشعة خطيرة جدًّا وغير مفيدة للإنسان.	. 9	

نماذج الذرة

فهء هذا الدرس

الأهداف

- توضّح كيفية اكتشاف العلماء للجسيمات المكوّنة للذرة.
- توضّح كيفية تطور النموذج الحالي للذرة.
 - تصف تركيب نواة الذرة.
- تفسّر أنّ جميع الموادّ تتكوّن من ذرات.

الأهمية

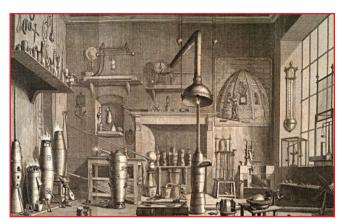
كلِّ شيء في عالمنا مكون من ذرات.

🥯 مراجعة المفردات

المادّة: كل شيء له كتلة ويشغل حيزًا من الفراغ.

المفردات الجديدة

- العنصر جسيات ألفا
 - الأنود البروتون
 - الكاثود النيوترون
- الإلكترون السحابة الإلكترونية


الآراء القديمة حول بنية الذرة

بدأ الناس يتساءلون عن ماهية المادة منذ ٢٥٠٠ سنة تقريبًا؛ حيث اعتقد بعض الفلاسفة القدماء أنّ المادة تتكوّن من جسيمات صغيرة جدًّا. وقد علّلوا ذلك بأنّك إذا أخذت قطعة من مادة ما، ثم قسمتها إلى نصفين، وقسمت كلّ نصف منها إلى قسمين أيضًا، واستمررت في التقسيم فإنّك في النهاية ستجد نفسك غير قادر على الاستمرار؛ لأنّك ستصل في النهاية إلى جسيم غير قابل للتقسيم، ولذلك أطلقوا على هذه الجسيمات اسم الذرات atoms. وهو مصطلح معناه غير قابل للتقسيم. ولكي تتخيل ذلك بطريقة أخرى تصوّر أنّ لديك سلسلة من الخرز كما في الشكل ١ ـ وأنّك قسمتها إلى قطع أصغر فأصغر، ففي النهاية ستصل إلى خرزة واحدة. وقد أشار الله تعالى إلى ماهو أصغر من الذرة في قوله: ﴿ وَقَالَ خَرِدَ وَاحدة. وقد أشار الله تعالى إلى ماهو أصغر من الذرة في قوله: ﴿ وَقَالَ ذَرّةً فِي السّمَوَتِ وَلَا فِي الْأَرْضِ وَلاَ أَصْعَرُ مِن ذَلِكَ وَلاَ أَحَعَرُ اللّه فِي اللّه عَنْهُ مِثْقَالُ فَي كَتَبِ اللّه على مورة سبأ.

وصف ما لا يُرى لَمْ يحاول قدماء الفلاسفة إثبات نظرياتهم بالتجارب العملية كما يفعل العلماء اليوم؛ فقد كانت نظرياتهم نتيجة للتفكير المجرد والجدل والمناقشات، دون أي دليل أو برهان. أمّا العلماء اليوم فلا يقبلون نظريّة غير مدعومة بالدليل التجريبي. ولكن حتى لو أجرى الفلاسفة القدماء تجارب ليتمكنوا من إثبات وجود ذرات فلم يكن الناس في ذلك الوقت قد عرفوا كثيرًا معنى الكيمياء أو دراسة المادّة؛ ولم تكن الأجهزة اللازمة لدراسة المادّة معروفة بعد، فظلت الذرات لغزًا محيرًا لسنين طويلة، بل وحتى ما قبل ٠٠٠ سنة.

الشكل المكنك تقسيم شريط الخرز الى قسمين، ثم تقسيم كل نصف إلى نصفين، وهكذا حتى تصل إلى خرزة واحدة. وهكذا يمكن تقسيم جميع المواد مثل شريط الخرز حتى تصل إلى جسيم واحد أساسي يُسمى (الذرة).

نموذج الذرة

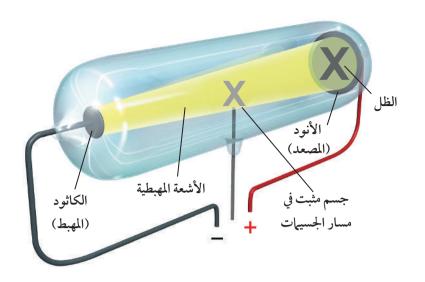
مضى وقت طويل قبل أن تتطوّر النظريات المتعلقة بالذرة. فقد بدأ العلماء في القرن الثامن عشر البحث لإثبات وجود الذرات في مختبراتهم، رغم قلة إمكانات هذه المختبرات كما في الشكل ٢. ودرس الكيميائيون المادّة وتغيراتها، فقاموا بإضافة موادّ إلى بعضها البعض لإنتاج موادّ أخرى، وقاموا بفصل موادّ بعضها عن بعض ليتمكنوا من تعرّف مكوناتها، فوجدوا أنّ هناك موادّ معينة لا يمكن تجزئتها إلى موادّ أبسط منها، أطلقوا عليها اسم العناصر. والعنصر Element مادّة تتكون من نوع واحد من الذرات. فعنصر الحديد على سبيل المثال يتكوّن من ذرات الفضة فقط، وكذلك الأمر مع عنصر الكربون أو الذهب أو الأكسجين.. وغيرها.

مفه وم دالتون قام المدرس الإنجليزي الأصل جون دالتون في القرن التاسع عشر بدمج فكرة العناصر مع النظرية السابقة للذرة، واقترح مجموعة أفكار حول المادّة، هي:

- ١٠ تتكوّن المادّة من ذرات.
- ٢. لا تنقسم الذرات إلى أجزاء أصغر منها.
 - ٣. ذرات العنصر الواحد متشابهة تمامًا.
- ٤. تختلف ذرات العناصر المختلفة بعضها عن بعض.

وقد صوّر دالتون الذرة على أنّها كرة مصمتة متجانسة، أي أنها تشبه الكرة التي تظهر في الشكل ٣.

الإثبات العلمي تم اختبار نظرية دالتون للذرة في النصف الثاني من القرن التاسع عشر. ففي عام ١٨٧٠م، أجرى العالم الإنجليزي وليام كروكس William التاسع عشر. ففي عام ١٨٧٠م، أجرى العالم الإنجليزي وليام كروكس Crookes تجاربه باستخدام أنبوب زجاجي مفرّغ من الهواء تقريبًا، وثبّت بداخله قطعتين معدنيتين تسميان قطبين، تم توصيلهما ببطارية عن طريق أسلاك.


الشكل ٢ على الرغم من أنّ إمكانات المختبرات قديمًا كانت بسيطة مقارنة بالمختبرات العلمية الحالية، إلا أنّ الكثير من الاكتشافات المذهلة حدثت خلال القرن الثامن عشر.

الذرات أصغر مما تظن الجوالي كراسة التجارب العملية

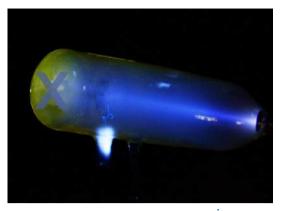
الشكل ٣ نموذج للذرة كما تصورها دالتون.

الشكل ٤ استخدم كروكس أنبوبًا زجاجيًّا يحوي كمية قليلة من الغاز، وعند توصيل طرفي الأنبوب بالبطارية انطلق شيء ما من القطب السالب (الكاثود) إلى القطب الموجب (الأنود). وضح هل هذا الشيء الغريب ضوء أم سيل من الجسيمات؟

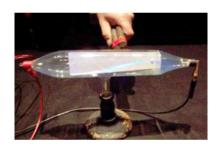
أنود (مصعد) Anode، وشحنته موجبة. أمّا الآخر فيُسمّى كاثود (مهبط) وشحنته سالبة. وفي أنبوب كروكس كان المهبط عبارة عن قرص فلزي مثبت في أحد طرفي الأنبوب. وفي وسط الأنبوب قام كروكس بتثبيت جسم على هيئة (+) كما في الشكل ٤. وعند توصيل الأنبوب بالبطارية توهّج الأنبوب بشكل مفاجئ بوهج أخضر اللّون، وظهر ظلّ الجسم الموجود في وسط الأنبوب على الطرف المقابل للمصعد. وقد فسر كروكس ذلك بأنّ هناك شيئًا يشبه الشعاع الضوئي انتقل في خطّ مستقيم من المهبط إلى المصعد، ممّا أدّى إلى تكون ظلّ للجسم الموجود في وسط الأنبوب، وهذا يحاكي ما يقوم به عمال الطرق؛ حيث للجسم الموجود في وسط الأنبوب، وهذا يحاكي ما يقوم به عمال الطرق؛ حيث وضع علامات المرور الأرضية على الطرقات. انظر الشكل ٥.

النظل الغريب القطبان قطعتان فلزيتان موصلتان للكهرباء، يُسمّى أحدهما

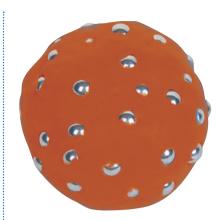
الشكل ما يقوم به عمال الطرق في هذه الصورة يحاكي ما حدث في أنبوب كروكس، والأشعة المهبطية.


اكتشاف الجسيمات المشحونة

أثارت تجارب كروكس المجتمع العلمي في ذلك الوقت، ولكن كثيرًا منهم لم يقتنعوا أنّ الأشعة المهبطية عبارة عن تيار من الجسيمات. فهل كان هذا التوهج الأخضر ضوءً أم جسيمات مشحونة؟ حاول العالم الفيزيائي طومسون J.J. Thomson عام ١٨٩٧م حل هذا التضارب عندما وضع مغناطيسًا بالقرب من أنبوب كروكس عند تشغيله، كما في الشكل ٧ أدناه، فلاحظ انحناء الشعاع. ولأنّ المغناطيس لا يؤدي إلى انحناء الضوء فقد استنتج أنّ هذا الشعاع لا بدّ أن يكون جسيمات مشحونة تخرج من المهبط (الكاثود).


الإلكترون أعاد طومسون إجراء تجربة أنبوب أشعة الكاثود CRT مستخدمًا مهبطًا من فلزات مختلفة، وكذلك غازات مختلفة في الأنبوب، فوجد أنّ الجسيمات المشحونة هي نفسها التي تنبعث مهما اختلفت الفلزات أو الغازات المستخدمة داخل الأنبوب، فاستنتج أنّ الأشعة المهبطيّة جسيمات سالبة الشحنة موجودة في كلّ الموادّ. ولكن كيف عرف طومسون أنّ هذه الجسيمات تحمل الشحنة السالبة؟ من المعروف أنّ الشحنات المختلفة تتجاذب. وقد لاحظ طومسون أنّ هذه الجسيمات تنجذب نحو المصعد ذي الشحنة الموجبة، فليقن عندها أنّ هذه الجسيمات لا بّد أن تكون سالبة الشحنة، وسميت فيما بعد الإلكترونات Electrons.

لقد استنتج طومسون أيضًا أنّ هذه الإلكترونات مكون أساسي لجميع أنواع الذرات؛ لأنّها تنتج عن أيّ مهبط مهما كانت مادّته. ولعل المفاجأة الكبرى التي جاء بها طومسون في تجاربه كانت الدليل على وجود جسيمات أصغر من الذرة.


نموذج طومسون للذرة تمت الإجابة عن بعض الأسئلة التي طرحها العلماء من خلال تجارب طومسون. ولكن هذه الإجابات أثارت أسئلة جديدة، منها: إذا كانت الذرات تحتوي على جسيم واحد سالب الشحنة أو أكثر فستكون معظم الذرات سالبة الشحنة أيضًا، ولكن من الملاحظ أنّ المادّة غير سالبة الشحنة، فهل تحتوي الذرات على شحنات موجبة أيضًا؟ إذا كان الأمر كذلك فإنّ الإلكترونات السالبة والشحنات المجهولة الموجبة سيجعلان الذرة متعادلة الشحنة. وقد توصل طومسون إلى هذه النتيجة، وأضاف الشحنة الموجبة إلى نموذجه للذرة. وبناءً على ذلك عدّل طومسون نموذج دالتون للذرة، وصوّرها على أنّها كرة من الشحنات الموجبة تنتشر فيها إلكترونات سالبة الشحنة (بدلاً من الكرة المصمتة الشحنات الموجبة تنتشر فيها إلكترونات سالبة الشحنة (بدلاً من الكرة المصمتة

الشكل ٦ سُمّي أنبوب الأشعة المهبطية بهذا الاسم لأنّ الجسيمات تبدأ سيرها من المهبط (الكاثود) إلى المصعد (الأنود). وفي وقت من الأوقات استخدم هذا الأنبوب في شاشات التلفاز والحاسوب.

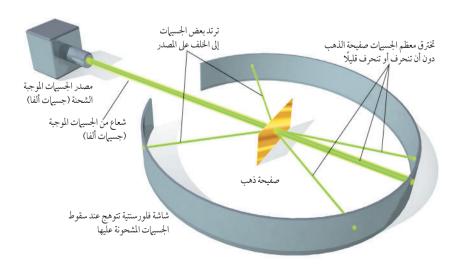
الشكل ٧ عند وضع مغناطيس بالقرب من CRT تنحني الأشعة المهبطية. وبما أن الضوء لا يتأثر بالمغناطيس فقد استنتج طومسون أن أشعة المهبط تتكون من جسيمات مشحونة.

الشكل ٨ نموذج كرة الصلصال التي تحوي كرات صغيرة منتشرة فيها، هو طريقة أخرى لتصور النرة؛ حيث تحوي كرة الصلصال كل الشحنات الموجبة، والكرات الصغيرة تُمثّل الشحنات السالبة.

فسر لماذا ضمّن طومسون الجسيمات الموجبة في نموذجه للذرة؟

الصلبة)، كما هو موضّح في نموذج كرة الصلصال في الشكل ٨؛ حيث إنّ عدد الشحنات الموجبة لكرة الصلصال يساوي عدد الشحنات السالبة للإلكترونات، ولذلك فإنّ الذرة متعادلة.

ما الجسيات المنتشرة في نموذج طومسون؟


اكتُشف مؤخرًا أن ذرات العناصر لا تكون متعادلة دائمًا؛ لأن عدد الإلكترونات فيها قد يتغير، فإذا كان عدد الشحنات الموجبة أكثر من عدد الإلكترونات السالبة تكون الشحنة الكلية لذرة العنصر موجبة. أمّا إذا كان عدد الإلكترونات السالبة الشحنة أكثر من عدد الشحنات الموجبة في ذرة العنصر فتكون شحنتها سالبة.

تجربة رذرفورد

لا يقبل العلماء أيّ نموذج ما لم يتم اختباره، بحيث تدعم نتائج التجارب والاختبارات المشاهدات السابقة. بدأ رذر فورد ومساعدوه عام ١٩٠٦م اختبار صحة نموذج طومسون للذرة، فأرادوا معرفة ما يمكن أن يحدث عند إطلاق جسيمات موجبة سريعة - كجسيمات ألفا Alpha particles التصطدم بمادة مثل صفيحة رقيقة من الذهب، وهذه الجسيمات الموجبة (جسيمات ألفا) تأتي من ذرات غير مستقرة. ولأنّها موجبة الشحنة فإنّها ستتنافر مع جسيمات المادّة الموجبة.

يبين الشكل ٩ كيف صُمّمت التجربة، حيث يصوّب مصدر جسيمات ألفا نحو صفيحة رقيقة من الذهب سمكها ٠٠٠ نانومتر، محاطة بشاشة (فلورسنتية) تتوهج بالضوء عند سقوط جسيمات مشحونة عليها.

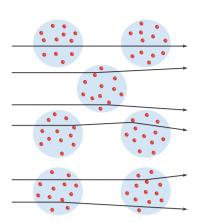
نتائج متوقعة كان رذرفورد واثقًا من نتائج التجربة، حيث توقع أنّ معظم جسيمات ألفا السريعة ستمرّ من خلال الصفيحة لتصطدم بالشاشة في الطرف

الشكل ٩ عند قذف جسيمات ألفا نحو صفيحة الذهب في تجربة رذرفورد نجد أنّ معظم الجسيمات قد اخترقت الصفيحة دون أن تنحرف، وبعضها انحرف قليلاً عن مساره المستقيم، وبعضها ارتد عن الصفيحة.

المقابل تمامًا، كما تخترق الرصاصة لوحًا من الزجاج. وبرّر رذرفورد ذلك بأنّ صفيحة الذهب لا توجد فيها كمية كافية من المادّة لإيقاف جسيمات ألفا السريعة أو تغيير مسارها، كما أنّه لا توجد شحنة موجبة كافية ومتجمعة في مكان واحد في نموذج طومسون لصدّ جسيمات ألفا بالقوة الكافية. لذا؛ فقد اعتقد أنّ الشحنة الموجبة الموجودة في ذرات الذهب ستُحدث تغيرات يسيرة في مسار جسيمات ألفا، كما أن ذلك لن يتكرر كثيرًا.

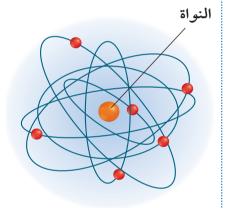
لقد كانت هذه الفرضية معقولة إلى حدّ ما؛ لأنّ الإلكترونات السالبة تعادل الشحنات الموجبة كما يفترض نموذج طومسون. ولثقته في النتائج المتوقعة من هذه التجربة، أحال رذرفورد تنفيذها إلى أحد طلابه في قسم الدراسات العليا.

فشل النموذج صُدم رذرفورد عندما جاءه تلميذه مندفعًا ليخبره أنّ بعض جسيمات ألفا انحرفت عن مسارها بزوايا كبيرة، كما في الشكل ٩، فعبّر رذرفورد عن اندهاشه بقوله: "إنّ تصديقنا لذلك يشبه تصديقنا بأنك أطلقت قذيفة قطرها ٥, ٦٢ سم نحو مجموعة من المناديل الورقية، فارتدت عنها وأصابتك".

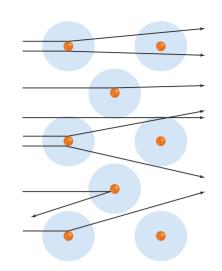

فكيف يمكن تفسير ما حدث؟ إنّ جسيمات ألفا الموجبة كانت تتحرّك بسرعة كبيرة جدًّا لدرجة أنها احتاجت إلى شحنة موجبة أكبر منها لصدّها، بينما كان تصوّر طومسون للذرة في نموذجه أنّ الكتلة والشحنات موزعة بشكل متساو، بحيث لا تستطيع الذرة صدّ جسيمات ألفا.

النموذج النووى للذرة

كان على رذرفورد وفريقه تفسير هذه النتائج غير المتوقعة، برسم أشكال توضيحية مبنية على نموذج طومسون، كما في الشكل ١٠، والتي تبيِّن تأثر جسيمات ألفا بالشحنة الموجبة للذرة والانحراف البسيط لهذه الجسيمات. وفي كل الأحوال، فإن التغير الكبير في مسار الجسيمات لم يكن متوقعًا.


البروتون وجدر ذر فورد أنّ هذا النموذج لا يؤدي إلى نتائج صحيحة، لذلك اقترح نموذجًا جديدًا، كما في الشكل ١١، ينص على أن معظم كتلة الذرة وشحنتها الموجبة تتركز في منطقة صغيرة جدًّا في الذرة تُسميّ النواة، وهو ما تم إثبات صحته فيما بعد؛ ففي عام ١٩٢٠م أطلق العلماء على الجسيم الموجب الشحنة الذي يوجد في نوى جميع الذرات البروتون Proton. بينما بقية حجم الذرة فراغ يحوي إلكترونات عديمة الكتلة تقريبًا.

الجديد؟ كيف وصف رذرفورد نموذجه الجديد؟


بروتون • مسار جسيم ألفا حـــ

الشكل ١٠ اعتقد رذرفورد أنه إذا تم وصف الذرة حسب نموذج طومسون كما هو موضّح فسوف يحدث انحراف قليل في مسار الجسيمات.

شكل ١١ ساهم نموذج النواة الحديث في تفسير نتائج التجارب. فقد تضّمن نموذج رذرفورد وجود كتلة كثافتها كبيرة في الوسط، تتكوّن من جسيات موجبة الشحنة تُسمّى النواة.

الشكل ۱۲ النواة التي تشكّل معظم كتلة الذرة سببت الانحراف والارتداد الذي لوحظ في التجربة.

تجربة

نموذج الذرة النووية

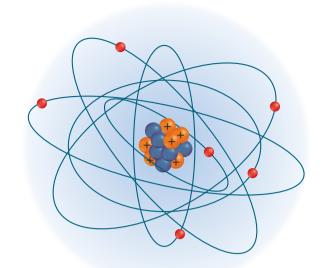
الخطوات

- ارسم على ورقة بيضاء دائرة قطرها يساوي عرض الورقة.
- اصنع نموذجًا للنواة باستخدام قصاصات صغيرة من الورق الملون بلونين، يمثّل أحدهما البروتونات، وثبتهما والآخر النيوترونات، وثبتهما في مركز الدائرة باستعمال لاصق، ممثلًا بذلك نواة ذرة الأكسجين التي تتكوّن من ٨ بروتونات و٨ نيوترونات.

التحليل

- الجسيمات المفقودة في النموذج الذي صمّمته لذرة الأكسجين؟
- ٢. ما عدد الجسيمات التي من المفترض أن توجد في النموذج؟ وأين يجب أن توضع؟

يبين الشكل ١٢ التطابق بين نموذج رذرفورد الجديد للذرة والنتائج التجريبية؛ فمعظم جسيمات ألفا يمكن أن تخترق الصفيحة دون انحراف أو مع انحراف قليل؛ بسبب الفراغ الكبير الموجود في الذرة. وعندما تصطدم جسيمات ألفا مباشرة بنواة ذرة الذهب التي تحتوي على ٧٩ بروتونًا ترتد إلى الخلف بقوة.


النواة 🌑

___ مسار جسيم ألفا

النيوترون رغم الاستحسان الذي لقيه نموذج رذرفورد النووي بعد مراجعة العلماء لنتائج التجارب التي توصل إليها، إلّا أنّ بعض النتائج لم تكن متوافقة، فظهرت تساؤلات جديدة، فعلى سبيل المثال، إلكترونات الذرة عديمة الكتلة تقريبًا، وحسب نموذج رذرفورد للذرة فإنّ الجسيمات الأخرى الوحيدة في الذرة هي البروتونات، وقد وجد أنّ كتل معظم الذرات يساوي ضعف كتلة بروتوناتها تقريبًا، ممّا وضع العلماء في مأزق. فإذا كانت الذرة مكوّنة من إلكترونات وبروتونات فقط فمن أين جاء الفرق في كتلة الذرة؟ وللخروج من هذا المأزق افترضوا وجود جسيمات أخرى في الذرة لمعالجة فرق الكتلة. وقد سميت هذه الجسيمات النيوترونات. والنيوترون الكتلة مساوية لكتلة البروتون، ولكنّه متعادل كهربائيًا. ولأن النيوترون عديم الشحنة ولا يتأثر بالمجال المغناطيسي ولا يكوّن ضوءًا على شاشة الفلورسنت فقد تأخر اكتشافه أكثر من المغناطيسي ولا يكوّن لعلماء من إثبات وجود النيوترونات في الذرة.

🏏 ماذا قرأت؟ ما الجسيات الموجودة في نواة الذرة؟

تمت مراجعة نموذج الذرة من جديد لإضافة النيوترونات المكتشفة حديثًا إلى النواة. فللذرة في النموذج النووي للذرة نواة صغيرة جدًّا تحوي البروتونات الموجبة الشحنة والنيوترونات المتعادلة الشحنة، أمّا الإلكترونات سالبة الشحنة، فتشغل الحيّز المحيط بالنواة. وفي الذرة المتعادلة يتساوى عدد الإلكترونات مع عدد البروتونات انظر الشكل ١٣٠.

الشكل ۱۳ ذرة الكربون الذي عدده الذري ٦ يحتوي على ٦ بروتونات و٦ نيوترونات في النواة.

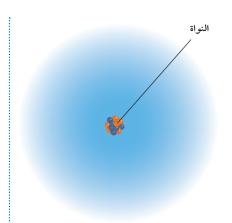
عيّن عددالإلكترونات الموجودة في "الفراغ" المحيط بالنواة.

الحجم ومقياس الرسم إنّ رسم الذرة النووية بحجم كبير - كما في الشكل ١٣ سابقًا - لا يمثل بشكل دقيق حجم النواة الحقيقي بالنسبة إلى الذرة كلها. فإذا كانت النواة بحجم كرة تنس الطاولة مثلاً فإنّ الذرة ستكون بقطر ٤, ٢ كم. ولمقارنة حجم النواة بحجم الذرة انظر الشكل ١٤. لعلك الآن عرفت لماذا اخترقت معظم جسيمات ألفا صفيحة الذهب في تجربة رذرفورد دون أن تواجهها أيّ معيقات (بسبب وجود فراغات كبيرة فيها تسمح بمرور جسيمات ألفا).

تطورات في تعرُّف بنية الذرة

عمل الفيزيائيون في القرن العشرين على نظرية جديدة لتفسير كيفية ترتيب الإلكترونات في الندرة. وكان من الطبيعي التفكير أنّ الإلكترونات السالبة الشحنة تنجذب إلى النواة الموجبة الشحنة بالطريقة نفسها التي ينجذب بها القمر إلى الأرض. لذا فإنّ الإلكترونات تتحرّك في مدارات حول النواة. وقد قام العالم الفيزيائي نيلز بور Niels Bohr بحساب طاقة المستويات لمدارات ذرة الهيدروجين بدقة، وفَسَّرتْ حساباته المعطيات التجريبية لعلماء آخرين. ومع ذلك فقد قال العلماء حينها إنّ الإلكترونات ثابتة، ولا يمكن توقّع حركتها في المدار أو وصفها بسهولة، كما أنّه لا يمكن معرفة موقع الإلكترون بدقة في لحظة معينة. وقد أثار عملهم هذا المزيد من البحث والعصف الذهني لدى العلماء حول العالم.

الإلكترونات كالموجات بدأ الفيزيائيون محاولة تفسير الطبيعة غير المتوقعة للإلكترونات. وبالتأكيد فإنّ نتائج التجارب التي توصلوا إليها حول سلوك الإلكترونات تمّ تفسيرها بوضع نظريات ونماذج جديدة. وكان الحلّ غير المألوف اعتبار الإلكترونات موجات وليس جسيمات. وقاد ذلك إلى المزيد من النماذج الرياضية والمعادلات التي أدت إلى الكثير من النتائج التجريبية.



لبروتونات

حدد رذر فورد مكونات النواة عام ١٩١٩ م بوصفها جسيمات موجبة الشحنة. وعند استخدام جسيمات ألفا كقذائف تَمكّن من فصل نواة الهيدروجين عن ذرات عناصر البورون والفلور والصوديوم والألومنيوم والفوسفور والنيروجين. وقد أطلق رذر فورد على نواة ذرة الهيدروجين اسم البروتون، والتي تعني "الأول" عند الإغريق؛ لأنّ البروتونات هي أول وحدات أساسية عُرفت في النواة.

الشكل ١٤ إذا كانت هذه الدائرة التي قطرها ١٣٢ مترًا تمثل الإطار الخارجي للذرة فإن النواة تُمثّل تقريبًا حجم حرف (ة) على هذه الصفحة.

الشكل ١٥ تميل الإلكترونات إلى أن توجد بالقرب من النواة وليس بعيدًا عنها، ولكنها قد توجد في أي مكان.

نموذج السحابة الإلكترونية إنّ النموذج الجديد للذرة يسمح للطبيعة الموجية للإلكترونات بتحديد المنطقة التي يحتمل أن توجد فيها الإلكترونات غالبًا. فالإلكترونات تتحرّك في منطقة حول النواة تُسمّى السحابة الإلكترونية غالبًا. فالإلكترونات تتحرّك في الشكل ١٥. إذ يحتمل أن توجد الإلكترونات في أقرب منطقة من النواة (ذات اللون الأغمق)، أكثر من احتمال وجودها في أبعد منطقة عنها (ذات اللون الفاتح)؛ بسبب جذب البروتونات الموجبة لها. لاحظ أن الإلكترونات قد توجد في أيّ مكان حول النواة؛ فليس للسحابة الإلكترونية حدود واضحة. وقد قام العالم نيلز بور من خلال حسابات بتحديد منطقة حول النواة من المتوقع أن يوجد فيها الإلكترون في ذرة الهيدروجين.

مراجعة الدرس

الخلاصة

نماذج الذرة

- اعتقد قدماء الفلاسفة أن جميع المواد تتكون من جسيمات صغيرة.
- اقترح دالتون أنّ جميع الموادّ تتكوّن من ذرات عبارة عن كرات مصمته صلبة.
 - بين طومسون أن الجسيمات في أنبوب الأشعة المهبطية CRT كانت سالبة الشحنة، وقد سميت الإلكترونات.
 - بين رذرفورد أن الشحنة الموجبة توجد في منطقة صغيرة في الذرة تُسمّى النواة.
 - لتفسير كتلة الذرة تم افتراض وجود النيوترون
 بوصفه جسيمًا غير مشحون له نفس كتلة
 البروتون الموجود في النواة.
- يُعتقد الآن أنّ الإلكترونات تتحرّك حول النواة في سحابة إلكترونية.

اختبر نفسك

- ١. فسر كيف يختلف النموذج النووي للذرة عن نموذج الكرة المصمتة؟
- حد عدد الإلكترونات في ذرة متعادلة تحتوي ٤٩ .
 بروتونًا.
- ٣. التفكيرالناقد لماذا لم تؤثر إلكترونات صفيحة الذهب في تجربة رذرفورد في مسار جسيات ألفا؟
- خريطة مفاهيمية صمّم خريطة مفاهيميّة، على أن تضع فيها المفردات المتعلقة بنهاذج الذرات والتي وردت في هذا الدرس.

تطبيق الرياضيات

مل المعادلة بخطوة واحدة إذا علمت أنّ كتلة الإلكترون تساوي ١٠,٩×١٠ - ٢٨ جم، وأنّ كتلة البروتون تعادل كتلة الإلكترون ١٨٦٣ مرة، فاحسب كتلة البروتون بوحدة الجرام، ثم حولها إلى وحدة الكيلوجرام.

العلوم و عبر المواقع الالكترونية لزيد من الاختبارات القصيرة ارجع إلى الموقع الإلكتروني:www.obeikaneducation.com

النــواة

العدد الذرى

إنّ نموذج السحابة الإلكترونية نموذج معدّل عن النموذج النووي للذرة. ولكن كيف تختلف نواة ذرة عنصر ما عن نواة ذرة عنصر آخر؟ إنّ ذرات العناصر المختلفة تحوي أعدادًا مختلفة من البروتونات. والعدد الذري المعنصر. فذرة الهيدروجين عنصر هو عدد البروتونات الموجودة في نواة ذلك العنصر. فذرة الهيدروجين مثلاً أصغر ذرات العناصر؛ فهي تحتوي على بروتون واحد في نواتها، ولذلك فإنّ العدد الذري للهيدروجين هو ١. بينما عنصر اليورانيوم أثقل العناصر الموجودة في الطبيعة، وتحتوي نواته على ١٩ بروتونًا. لذا فإن العدد الذري له ٩٢. وتتميز العناصر بعضها عن بعض بعدد بروتوناتها؛ لأنّ عدد البروتونات لا يتغير إلا بتغير العنصر.

عدد النيوترونات في نواة الذرة؟ عدد النوتونات. ولكن ماذا عن عدد النيوترونات في نواة الذرة؟

إنّ ذرات العنصر نفسه يمكن أن تختلف في أعداد النيوترونات في نواها؛ فنجد أنّ معظم ذرات الكربون مثلًا تحوي ستة نيوترونات، بينما يحوي بعضها الآخر سبعة أو ثمانية نيوترونات، كما في الشكل ١٦ الذي يمثّل ثلاثة أنواع من ذرات الكربون تحتوي كل منها على ستة بروتونات. وهذه الأنواع الثلاثة من ذرات الكربون تسمّى النظائر. والنظائر sotopes ذرات للعنصر نفسه، ولكنّها تحوي أعدادًا مختلفة من النيوترونات. وتُسمّى نظائر الكربون (كربون-١٢، كربون-١٣، كربون - ١٣، كربون - ١٤)؛ حيث تشير الأرقام (١٢، ١٣، ١٤) إلى مجموع أعداد النيوترونات في نواة ذرة كلّ نظير، والتي تشكل معظمَ كتلة ذرته.

في هذا الدرس

الأهداف

- تصف عملية التحلّل الإشعاعي.
 - توضّح معنى عمر النصف.
- تصف استخدامات النظائر المشعة.

الأهمية

العناصر المشعة ذات فائدة كبيرة، ولكن يجب التعامل معها بحذر شديد.

🤉 مراجعة المفردات

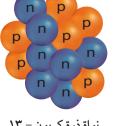
الذرة أصغر جزء في العنصر . يحتفظ بخصائص ذلك العنصر .

المفردات الجديدة

- العدد الذري التحلّل الإشعاعي
 - النظائر التحول
 - العدد الكتلى جسيات بيتا

الشكل ١٦ تختلف نظائر الكربون

الثلاثة في عدد النيوترونات


الموجودة في كل نواة.

• عمر النصف

نواة ذرة كربون - ١٣

نواة ذرة كربون - ١٢

الجدول ١: نظائر الكربون					
کربون۔ ۱٤	کربون-۱۳	کربون-۱۲	النظير		
١٤	١٣	١٢	العدد الكتلي		
٦	٦	٦	عدد البروتونات		
٨	٧	٦	عدد النيوترونات		
٦	٦	٦	عدد الإلكترونات		
٦	٦	٦	العدد الذري		

العدد الكتلي يمكن تعريف العدد الكتلي number للنظير بأنّه مجموع عدد البروتونات والنيوترونات في نواة الذرة. ويُبين الجدول ١ عدد الجسيمات في كلّ نظير من نظائر الكربون. ويمكن إيجاد عدد النيوترونات في كلّ نظير بطرح العدد الذري من العدد الكتلي. فعلى سبيل المثال: عدد النيوترونات في (كربون - ١٤) = ١٤ – ٦ =

النظائر والكتلة الذرية الربية النارية الزية الذرية الزية المالية الزياد المالية التاريب المالية الزياد المالية التاريخ المالية المالية المالية التاريخ المالية التاريخ المالية التاريخ المالية التاريخ المالية التاريخ المالية المالية

القوة النووية الهائلة عندما تريد ربط عدّة أشياء معًا فماذا تستخدم؟ قد تستخدم أربطة مطاطية أو سلكًا أو شريطًا أو غراء. ولكن ترى، ما الذي يربط البروتونات والنيو ترونات معًا في النواة؟ ستعتقد أنّ البروتونات الموجبة الشحنة يتنافر بعضها مع بعض كما تتنافر الأقطاب المتشابهة للمغناطيس. في الواقع إن هذا هو السلوك الصحيح الذي تفعله الأقطاب المتشابهة، ومع ذلك فوجود البروتونات في الحيز نفسه مع النيو ترونات تؤثر فيها قوة رابطة كبيرة تتغلب على قوى التنافر، تدعى القوة النووية الهائلة. وهذه القوة تعمل على المحافظة على تماسك البروتونات عندما تكون متقاربة بعضها من بعض في نواة الذرة.

التحلل الإشعاعي

إنّ الكثير من الـذرات تكون مستقرة عندما يكون عدد البروتونات مساويًا لعدد النيوترونات في نواها. لذلك نجد أنّ نظير (الكربون- ١٢) أكثر استقرارًا من نظائر الكربون الأخرى؛ لاحتوائه على ٦ بروتونات و٦ نيوترونات، ونجد أنّ بعض الأنوية غير مستقرة لاحتوائها على نيوترونات أقلّ من البروتونات أو أكثر منها في بعض الأحيان، وخصوصًا في العناصر الثقيلة، ومنها اليورانيوم والبلوتونيوم؛ حيث يحدث تنافر في نواها، فتفقد بعض الجسيمات لكي تصل إلى حالة أكثر استقرارًا. ويرافق ذلك تحرر للطاقة. وتعرف هذه العملية بالتحلّل الإشعاعي Radioactive decay. فعند خروج بروتونات من النواة يتغير العدد الذري، ويتحوّل العنصر إلى عنصر آخر، ويُسمّى هذا بالتحوّل. أي أن التحول الإشعاعي. Transmutation هو تغير عنصر إلى عنصر آخر عن طريق عملية التحلل الإشعاعي.

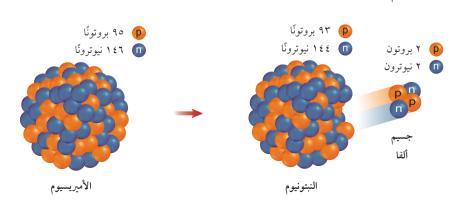
🟏 ماذا قرأت؟ 🕻 ما الذي يحدث في عملية التحلل الإشعاعي؟

التحلل الإشعاعي

ارجع إلى المواقع الإلكترونية عبر شبكة الإنترنت

للحصول على معلومات أكثر حول التحلّل الإشعاعي.

نشاط وضِّح كيف يستفاد من التحلّل الإشعاعي في أجهزة الكشف عن الدخان التي تستخدم في المباني؟


الشكل ١٧ جهاز كشف الدخان تطبيق عملي لاستخدامات النظائر المشعة، ومنها عنصر الأميريسيوم – ٢٤١. النظير موجود في العلبة الفلزية كما يظهر في الشكل المرفق، ويعمل المنبه عندما تدخل جسيمات الدخان إلى هذه العلبة.

> فقدان جسيمات ألفا يحدث التحوّل تقريبًا في الكثير من منازلنا، وأغلب المؤسسات والشركات التي تعمل في بلادنا. يبين الشكل ١٧ كاشف الدخان بوصف تطبيقًا عمليًّا على ظاهرة التحلل الإشعاعي؛ ويحتوي هذا الجهاز على عنصر الأميريسيوم-٢٤١ الذي يدخل مرحلة التحوّل بإطلاق الطاقة وجسيمات ألف التبي تحتوي على بروتونين ونيوترونين. وتُسمّى الجسيمات والطاقة معًا الإشعاع النووي.

> تمكّن جسيمات ألفا في جهاز كشف الدخان -والتي تسير بسرعة كبيرة - الهواءَ من توصيل التيار الكهربائي، وطالما كان التيار الكهربائي متدفقًا كان جهاز كشف الدخان صامتًا، أمّا إذا دخل الدخان إلى الجهاز واخترق التيار الكهربائي، فعندئذ ينطلق جهاز الإنذار.

> تغيير هوية العنصر عندما يقوم عنصر الأميريسيوم الذي عدده الذرى ٩٥ وعدد بروتوناته ٩٥ أيضًا بتحرير جسيمات ألف يفقد بروتونين فتتغير هويته إلى عنصر آخر هو النبتونيوم الذي عدده الذري ٩٣.

> لاحظ أنّ مجموع العدد الكتلى ومجموع العدد الذري لعنصر النبتونيوم عند إضافة جسيم ألفا إليه تساوي مجموع العدد الكتلي ومجموع العدد الذري لعنصر الأميريسيوم، انظر إلى الشكل ١٨، تبقى جميع الجسيمات داخل نواة الأميريسيوم على الرغم من التحوّل.

الشكل ١٨ يفقد الأميريسيوم جسيم ألفا، الذي يتكوّن من بروتونين ونيوترونين، ونتيجة لذلك يتحوّل عنصر الأميريسيوم إلى عنصر النبتونيوم الذي يحتوي على بروتونات أقل من الأميريسيوم ببروتونين.

الشكل ١٩ ينتج عن تحلّل بيتا زيادة في العنصر الناتج بمقدد الذري للعنصر الناتج بمقدار واحد على العنصر الأصلي.

تجربة تجربة

رسم بياني لعمر النصف

الخطوات

- ارسم جدولاً يتكون من ثلاثة أعمدة معنونة كالآتي: عدد أعمار النصف، وعدد الأيام اللازمة للتحلل، والكتلة المتبقية.
- ارسم ستة صفوف لستة أعمار نصف مختلفة.
- ٣. إذا كان عمر النصف لعنصر الثوريوم ٢٣٤ هـ و ٢٤ يومًا.
 املأ العمود الثاني بالعدد الكلي للأيام بعد كلّ عمر نصف.
- ابدأ بـ ٦٤ جم مـن الثوريوم، واحسب الكتلة المتبقية بعد كل عمر نصف.
- ارسم رسمًا بيانيًّا توضّح فيه العلاقة بين عمر النصف على المحور السيني، والكتلة المتبقية على المحور الصادي.

التحليل

- ١. في أيّ مرحلة من عمر النصف يتحلّل معظم الثوريوم؟
- ٢. كم يتبقى من الثوريوم في اليوم
 ١٤٤

فقدان جسيمات بيتا يمكن لبعض العناصر أن تتحول عندما تطلق نواة العنصر الكترونًا يدعى جسيم بيتا. وجسيم بيتا Beta particle الكترون له طاقة عالية تأتي من النواة، وليس من السحابة الإلكترونية. فكيف تفقد النواة إلكترونات رغم احتوائها على بروتونات ونيوترونات فقط؟ في هذا النوع من التحوّل يصبح النيوترون غير مستقرّ، وينقسم إلى بروتون وإلكترون، يتحرّر الإلكترون (جسيم بيتا)، مع كميّة عالية من الطاقة. أمّا البروتون فيبقى داخل النواة.

ما جسیات بیتا؟ ما جسیات بیتا؟

يصبح في النواة بروتون زائد بسبب تحوّل النيوترون إلى بروتون. وخلافًا لما يحدث أثناء عملية تحلّل جسيمات ألفا، فإنّ العدد الذري في أثناء تحلّل جسيمات بيتا في جسيمات بيتا يزداد بمقدار واحد. ويوضّح الشكل ١٩ تحلل جسيمات بيتا في نواة نظير الهيدروجين ٣، وهي غير مستقرة بسبب وجود نيوترونين في نواتها. وفي أثناء التحوّل يتحوّل أحدهما إلى بروتون وجسيم آخر هو جسيم بيتا، فينتج نظير الهيليوم، وتبقى كتلة العنصر تقريبًا ثابتة؛ لأنّ كتلة الإلكترون المفقود صغيرة حدًّا.

معدّل التحلل

هل يمكن تحليل النواة، أو تحديد متى يمكن تحلّلها إشعاعيًّا؟ للأسف، لا يمكن ذلك؛ لأنّ التحلّل الإشعاعي يحدث بشكل عشوائي، ويُشبه إلى حدّ كبير مراقبتك للذُّرة عندما تتحوّل إلى فشار، لا يمكنك تحديد أيّ حبيبات الذرة ستتحول أولاً؟ أو متى؟ ولكنك لو كنت خبيرًا في إعداد الفشار فستتمكّن من توقع الزمن اللازم لفرقعة نصف كمية الذُّرة التي تصبح فشارًا. إنّ معدل التحلّل للنواة يُقاس بعمر النصف كمية الدُّرة التي المناطئر هو الزمن اللازم لتحلّل نصف كمية الغنص.

بسراير	ف	٤ جم اليود - ١٣١	١	۲	٣	٤
٥	3 -	٧	۸ ۲ جم اليود - ۱۳۱	٩	٠.	11
17	14	١٤	10	۱۳ ۱ جم اليود - ۱۳۱	1٧	۱۸
١٩	۲٠	71	**	74	۲۶ ۰,۰ جم اليود – ۱۳۱	70
77	**	۲۸	۱ مارس	۲	٣	۶

الشكل ٢٠ عمر النصف هـ و الزمـن اللازم لكي تتحلّل نصف كتلة العنصر. احسب كتلة العنصر التي تتوقّع أن تكون في الرابع من شهر مارس.

حساب عمر النصف إنّ عمر النصف لنظير اليود - ١٣١ هو ثمانية أيام، فإذا بدأت بعينة من العنصر كتلتها ٤ جم، فسيتبقى لديك منها ٢ جم بعد ثمانية أيام، وبعد ١٦ يومًا (أو فترتين من عمر النصف) ستتحلّل نصف الكتلة السابقة، وسيتبقى ١ جم منها، كما يوضّح الشكل ٢٠. ويستمر التحلّل الإشعاعي للذرات غير المستقرة بمعدل ثابت، ولا يتأثر بالظروف المحيطة، ومنها المناخ والضغط والمغناطيسيّة أو المجال الكهربائي والتفاعلات الكيميائية. ويتراوح عمر النصف للنظائر بين أجزاء من الثانية وإلى مليارات السنين، وذلك حسب نوع العنصر.

استخدام الأرقام

تطبيق الرياضيات

إيجاد عمر النصف إذا علمت أنَّ فترة عمر النصف لعنصر التريتيوم هي ١٢,٥ سنة، وكان لدينا ٢٠ جم منه، فكم يتبقى منه بعد ٥٠ سنة؟

الحلّ:

1 المعطبات

٢ المطلوب

- فترة عمر النصف = ٥ , ١٢ سنة.
 - الكتلة في البداية = ٢٠ جم
- عدد فترات عمر النصف في ٥٠ سنة.
 - الكتلة المتقبة بعد ٥ سنة.
- عدد فترات عمر النصف = $\frac{\text{المدّة الزمنية}}{\text{فترة عمر النصف}}$ = ٤ فترات.

$$=\frac{\gamma}{\gamma}=\frac{\gamma}{\gamma}=\frac{\gamma}{\gamma}$$
 جم.

عوض عن عدد فترات عمر النصف والكتلة المتبقية في المعادلة الثانية، واحسب الكتلة في البداية، ستحصل على الكتلة نفسها التي بدأت منها (٢٠ جم).

٣ طريقة الحل

التحقّق من الحل

مسائل تدريبية

- إذا كان عمر النصف لنظير الكربون-١٤ هو ٥٧٣٠ سنة، فإذا بدأ ١٠٠ جم منه في التحلّل فكم يتبقى منه بعد ١٧١٩ سنة؟
- ٢٠. إذا كان عمر النصف لنظير الرادون-٢٢٢ هو ٨, ٣ أيام، فإذا بدأ ٥٠ جم منه في التحلل فكم يتبقى منه بعد ١٩ يومًا؟

لمراجعة التدريبات ارجع إلى الموقع الإلكتروني www.obeikaneducation.com

العلـــوم المواقع الإلكترونية

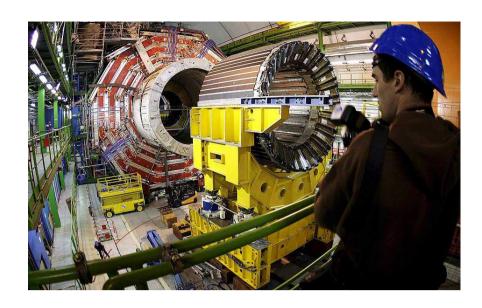
تحوّل الطاقة

يقوم مفاعل الطاقة النووية بتحويل الطاقة النووية إلى طاقة كهربائية وطاقة حرارية من النظير المشع يورانيوم - ٢٣٥. ابحث عن كيفية تخلص المفاعلات من الطاقة الحراريّة، واستنتج الاحتياطات اللازم اتخاذها للحيلولة دون تلوث المياه في المنطقة.

الشكل ۲۱ يستطيع علماء الآثار باستخدام تقنية تأريخ نظير الكربون – ۱۶ تحديد الفترة التي عاش فيها حيوان ما.

التأريخ الكربوني استفاد العلماء من خلال دراسة التحلّل الإشعاعي لبعض العناصر في تحديد العمر التقريبي لبعض الأحافير، فقد استخدموا نظير الكربون – ١٤ لتحديد عمر الحيوانات الميتة والنباتات وحتى الإنسان. إنّ عمر النصف لنظير الكربون – ١٤ هو ٥٧٣٠ سنة. وفي المخلوقات الحية تكون كمية نظير الكربون – ١٤ هو ٥٧٣٠ سنة. ومتوازن مع مستوى النظائر في المجو أو المحيط، ويحدث هذا التوازن لأنّ المخلوقات الحيّة تستهلك الكربون وتحرّره. فمثلاً تأخذ الحيوانات الكربون من غذائها على النباتات أو على غيرها من الحيوانات، وتحرّره على هيئة غاز ثاني أكسيد الكربون 0.00. وما دامت الحياة مستمرّة فإنّ أيّ تحلّل إشعاعي يحدث في أنوية ذرات الكربون – ١٤ يعوّض عنها من البيئة بمشيئة الله سبحانه وتعالى. وحين تنتهي حياة المخلوق الحي لا يكون بمقدوره تعويض ما فقده من نظير الكربون – ١٤.

وعندما يجد علماء الآثار أحفورة تعود لحيوان ما كالحيوان الظاهر في الشكل ٢١ يقومون بتعيين كمية نظير الكربون-١٤ الموجودة فيها ومقارنتها بكمية نظير الكربون-١٤ في جسمه عندما كان على قيد الحياة، وبذلك يحددون الفترة التي عاش فيها هذا المخلوق.



عندما يريد علماء الأرض تحديد العمر التقريبي للصخور لا يمكنهم استخدام التأريخ الكربوني؛

فهو يستخدم في تحديد عمر المخلوقات الحية فقط. وبدلاً من ذلك يقوم علماء الأرض باختبار تحلّل اليورانيوم؛ حيث يتحلّل نظير اليورانيوم - ٢٣٨ إلى نظير الرصاص - ٢٠٦، وعمر النصف له هو ٥, ٤ مليارات سنة، وبهذا التحوّل من اليورانيوم إلى الرصاص يتمكّن العلماء من تحديد عمر الصخور. وعلى أي حال

لقد اعترض بعض العلماء على هذه التقنية؛ فقد يكون الرصاص في بعض الصخور من مكوناتها الأساسية، وربما يكون قد انتقل إليها عبر السنين.

التخلص من النفايات المشعة تسبب النفايات التي تنتج عن عمليات التحلّل الإشعاعي مشكلة الأنها تترك نظائر تُصدِر إشعاعات، لذلك يجب التخلص منها بعزلها عن الناس والبيئة في أماكن خاصة تستوعب هذه النفايات المشعة لأطول مدة ممكنة، إذ يتم طمر هذه النفايات تحت الأرض بعمق يصل إلى حوالي ٦٥٥ مترًا.

الشكل ۲۲ مسرّع ضخم للجسيمات، يعمل على تسريع الجسيمات حتى تتحرك بسرعة كبيرة جدًّا وبشكل كاف لحدوث التحول الذري.

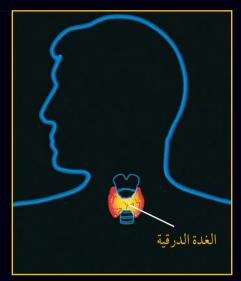
تكوين العناصر المصنّعة

تمكّن العلماء حديثًا من تصنيع بعض العناصر الجديدة، وذلك بقذف الجسيمات الذريّة كجسيمات ألفا وبيتا وغيرها على العنصر المستهدف؛ ولتحقيق ذلك، يتم – أولًا – تسريع الجسيمات الذرية في أجهزة خاصة، تسمى المسارعات كما هو مبين في الشكل ٢٢ لتصبح سريعة بشكل كافٍ لكي تصطدم بالنواة الكبيرة (الهدف)، فتقوم هذه النواة بامتصاصها، وبذلك يتحوّل العنصر المستهدف إلى عنصر جديد، عدده الذري كبير. وتُسمّى هذه العناصر الجديدة العناصر المصنّعة؛ لأنّها من صنع الإنسان. فهذه التحولات أنتجت عناصر جديدة لم تكن موجودة في الطبيعة، وهي عناصر لها أعداد ذرّية تتراوح بين ٩٣ – ١١٢ و ١١٤.

استخدامات النظائر المشعة لقد تم تطوير عمليات التحوّل الاصطناعي، وأصبح من الممكن استخدام نظائر العناصر المشعة المتحولة من عناصر مستقرّة في أجهزة تستخدم في المستشفيات والعيادات، وتُسمّى هذه النظائر العناصر المتبعة. وتستخدم في تشخيص الأمراض ودراسة الظروف البيئية. وتوجد النظائر المشعة في المخلوقات الحية، ومنها الإنسان والحيوان والنبات. ويمكن تتبع إشعاعات هذه النظائر من خلال أجهزة تحليل خاصة، وتظهر النتائج على شاشة عرض أو على شكل صور فوتوغرافية. ومن المهم معرفة أنّ النظائر المستخدمة في الأغراض الطبية لها عمر نصف قصير، ممّا يسمح لنا باستخدامها دون الخوف من مخاطر تعرض المخلوقات الحية لإشعاعات طويلة المدى.

النظائر المشعة في الطب والزراعة

ارجع إلى المواقع الإلكترونية عبر شبكة الإنترنت

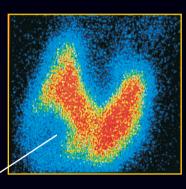

للبحث عن استخدامات النظائر المشعة في الطب والزراعة.

نشاط اكتب قائمة بالعناصر المشعة ونظائرها الأكثر شيوعًا، ثم بيِّن استخداماتها في الطب والزراعة.

العناصر المتتبعة

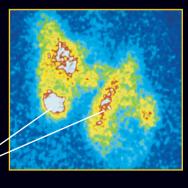
الشكل 23

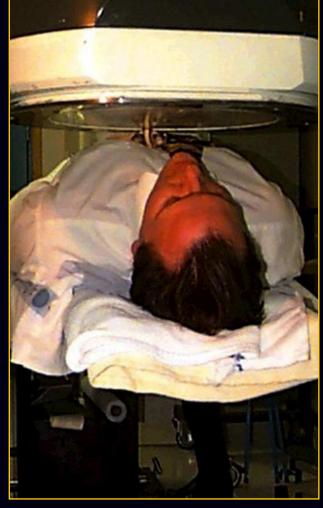
من القواعد المهمة أن نتجنب النساط الإسعاعي، غير أنّ بعض الموادّ المشعة التي تُسمّى العناصر المتبعة أو النظائر المسعة تستخدم بكميات بسيطة في تشخيص بعض الأمراض. فالغدة الدرقية السليمة تمتص اليود لتنتج هرمونين لتنظيم عمليات الأيض. وللتأكد من سلامتها وقيامها بوظائفها بشكل سليم يُجري المريض مسحًا للغدة الدرقية باستخدام النظائر المسعة، فيُعطى جرعة من اليود المشع (يود- ١٣١) إمّا عن طريق الفم أو الحقن، فتمتص الغدة الدرقية اليود كها لو أنّه يود عادي، ويقوم المختص باستخدام كاميرا خاصة تُسمّى كاميرا أشعة جاما، والتي تستعمل للكشف عن الإشعاع المنبعث من اليود - ١٣١، فيحوّل جهاز الحاسوب هذه المعطيات إلى صور توضّح حجم الغدة وفاعليتها. انظر إلى صور الغدة الدرقية أدناه التي أخذت بكاميرا أشعة جاما.


غدة طبيعية

غدة درقية سليمة تنتج هرمونات تنظم عمليات الأيض و معدل نبضات القلب.

غدة متضخمة


تظهر غدة درقية متضخمة أو كتلة كبيرة بسبب تناول أغذية تحتوي كمية قليلة من اليود. فيسبب تضخاً في الرقبة بحجم حبة البرتقال.


لتضخم

غدة نشطة

الغدة الدرقية النشطة تسرّع عمليات الأيض، ممّا يؤدي إلى فقدان الوزن وزيادة معدل ضربات القلب،

مناطق أقل نشاطًا

صورة توضح جهاز كاميرا أشعة جاما، وهو يتتبع موقع اليود-١٣١ خلال عملية مسح الغدة الدرقية.

الاستعمالات الطبية يستعمل اليود - ١٣١ لتشخيص المشاكل المتعلقة بالغدة الدرقية التي في أسفل الرقبة، كما هو موضّح في الشكل ٢٣٠. كما تستخدم بعض العناصر المشعة في الكشف عن السرطان، أو مشاكل الهضم، أو مشاكل الدورة الدموية. فيستخدم مثلاً العنصر المشع تكنيتيوم - ٩٩ الذي عمر النصف له ست (٦) ساعات لتتبع عمليات الجسم المختلفة. كما تُكتشف الأورام والتمزقات أو الكسور بوساطة هذه الموادّ؛ لأنّ النظائر تظهر صورًا واضحة عن الأماكن التي تنمو فيها الخلايا بسرعة.

الاستعمالات البيئية يُستخدم العديد من العناصر المشعّة في البيئة بوصفها مُتتبِّعات ومن هذه الاستخدامات حقن الفوسفور - ٣٢ المشع في جذور النباتات لتعرُّف مدى استفادة هذه النباتات من الفوسفور خلال عمليتي النمو والتكاثر؛ إذ يسلك الفوسفور - ٣٢ المشع عند حقنه في الجذور سلوك الفوسفور المستقر غير المُشع الذي يحتاج إليه النبات في النمو والتكاثر.

تستخدم النظائر المشعة أيضًا في المبيدات الحشرية، ويتم تتبعها لمعرفة تأثير المبيد في النظام البيئي، كما يمكن اختبار النباتات والحشرات والأنهار والحيوانات لتعرّف المدى الذي يصل إليه المبيد، وكم يدوم في النظام البيئي. تحوي الأسمدة كميات قليلة من النظائر المشعة التي تستخدم لتعرّف كيفية امتصاص النبات للأسمدة. كما يمكن أيضًا قياس مصادر المياه وتعقبها باستخدام النظائر؛ إذ تستخدم هذه التقنية للبحث عن مصادر المياه في الكثير من الدول المتقدمة والتي تقع في مناطق جافة.

انقسام الخلايا في الأورام

عندما تُصاب الخلايا بالسرطان فإنها تبدأ في الانقسام بسرعة، مسببة ورمًا. وعندما يوجّه الإشعاع مباشرة إلى الورم يعمل على إبطاء انقسام الخلايا أو إيقافه، مبتعدًا عن الخلايا السليمة المحيطة. ابحث بشكل مفصّل عن العلاج بالإشعاع، واكتب ملخصًا لبحثك في دفتر العلوم.

براجعة ٢ الدرس

الخلاصة

العدد الذري

- العدد الذري هو عدد البروتونات في نواة الذرة.
 - العدد الكتلي هو مجموع أعداد البروتونات والنيوترونات في نواة النرة.
 - نظائر العنصر الواحد تختلف في عدد النيوترونات.

النشاط الإشعاعي

- التحلّل الإشعاعي هو تحرير للجسيمات النووية والطاقة.
- التحوّل تغيّر عنصر إلى عنصر آخر خلال عملية التحلّل الإشعاعي، ومن طرائق التحوّل انطلاق جسيمات ألفا وطاقة من النواة، وكذلك انطلاق جسيمات بيتا من النواة.
- فترة عمر النصف لنظير مشع هي الزمن اللازم لتحول نصف كمية العنصر الشع إلى عنصر آخر.

اختىر نفسك

- عرف ما المقصود بالنظائر؟ وكيف يمكن حساب عدد النيوترونات في نظير العنصر؟
 - ٢. قارن بين نوعين من التحلّل الإشعاعي.
- ٣. استنتج. هل جميع العناصر لها عمر نصف؟ ولماذا؟
- وضح ما أهمية النظائر المشعة في الكشف عن المشكلات الصحية؟
- التفكيرالناقد. افترض أنّ لديك عينتين من نظير مشع، كتلة الأولى ٢٥ جم وكتلة الثانية
 ٥٠ جم، فهل تفقد العينتان خلال الساعة الأولى عددًا متساويًا من الجسيمات؟ وضّح ذلك.

تطبيق المهارات

7. اعمل نموذجًا. تعلمت كيف استخدم العلاء الكرات الزجاجية وكرة الصلصال والسحابة لصنع نموذج للذرة. صف الموادّ التي يمكن استعالها لعمل أحد النهاذج الذرية التي ذكرت في هذا الفصل.

مناواقع

صمم بنفسك

عمر النصف

الأهداف

تعمل نموذجًا لنظائر في عينة من مادة مشعة. تحديد كمية التغير الذي يحدث في المواد التي تمثّل النظائر المشعة في النموذج المصمّم لكل عمر نصف.

المواد والأدوات

- قطع نقدية ذات فئات مختلفة.
 - ورق رسم بياني.

صمم تجربة لاختبار أهمية عمر النصف في التنبؤ بكمية المادة المشعة المتبقية بعد مرور عدد محدد من فترات عمر النصف.

🔇 سؤال من واقع الحياة -

يتراوح معدل التحلُّل الإشعاعي في معظم النظائر المشعة بين أجزاء الثانية ومليارات السنين. فإذا كنت تعرف عمر النصف وحجم عينة النظير، فهل تستطيع التنبؤ بما يتبقى من العينة بعد فترة معينة من الزمن؟ وهل من الممكن توقع وقت تحلَّل ذرة معينة؟ كيف يمكنك استخدام القطع النقدية في تصميم نموذج يوضّح الكمية المتبقية من النظائر المشعة بعد مرور عدد معين من فترات عمر النصف؟

مستعينًا بتعريف مصطلح "عمر النصف" والقطع النقدية لتمثيل الذرات، اكتب فرضية توضّح كيف يمكن الاستفادة من عمر النصف في توقع كمية النظائر المشعة المتبقية بعد مرور عدد معين من فترات عمر النصف؟

استخدام الطرائق العلمية

🔇 اختبار الفرضية

تصميم خطة

- ١. بالتعاون مع مجموعتك اكتب نصّ الفرضية.
- ١كتب الخطوات التي ستنفذها لاختبار فرضيتك. افترض أنّ كلّ قطعة نقديّة تمثّل ذرة من نظير مشع، وافترض أنّ سقوط القطعة النقدية على أحد وجهيها يعنى أن الذرة تحللت.
 - ١عمل قائمة بالمواد التي تحتاج إليها.
 - ارسم في دفتر العلوم جدولاً للبيانات يحوي عمودين، عنون الأول عمر النصف، والثاني الذرات المتبقية.
 - . قرر كيف تستعمل القطع النقدية في تمثيل التحلل الإشعاعي للنظير.
 - 7. حدّ ما الذي يمثّل عمر النصف الواحد في نموذجك؟ وكم عمر نصف ستستكشف؟
 - ٧٠ حدّد المتغيرات في نموذجك، وما المتغير الذي سيمثل على المحور السيني؟ وما المتغير الذي سيمثل على المحور الصادى؟

تنفيذ الخطة

- ١. تحقّق من موافقة معلمك على خطة عملك وجدول بياناتك قبل البدء في التنفيذ.
 - ٠٢ نفذ خطتك، وسجّل بياناتك بدقة.

🚺 تحليل البيانات

العلاقة بين عدد القطع النقدية التي بدأت بها وعدد القطع النقدية المتبقية (ص) وعدد فترات عمر النصف (س) موضّحة في العلاقة التالية:

 $\frac{1}{2}$ عدد القطع النقديّة المتبقيّة (ص) = $\frac{(عدد القطع النقدية التي بدأت بها)}{2}$

- 1. **ارسم** هذه العلاقة بيانيًّا باستخدام آلة حاسبة بيانية، واستخدم هذا الرسم البياني لإيجاد عدد القطع النقديّة المتبقيّة بعد مرور (٢,٥) فترة عمر نصف.
 - 1. **قارن** بين نتائجك ونتائج زملائك.

🔇 الاستِنتاج والتطبيق -

- ١٠ هـل يُمكِّنك نموذجُك مـن توقع أيّ الذرات ستتحلّل خلال فترة عمر نصف واحدة؟ ولماذا؟
- ٢. هل يمكنك توقع عدد الذرات التي ستتحلّل خلال فترة عمر نصف واحدة؟ وضح إجابتك.

تـولامــل

لـــولاطــــان

اعرض بياناتك مرة أخرى باستخدام التمثيل بالأعمدة.

العلم والتاريخ

الرواد في النشاط الإشماعي

الفرضيات الثورية لماري كوري

اكتشف العالم الفيزيائي ويلهلم رونتجن عام ١٨٩٥م نوعًا من الأشعة التي تخترق اللّحم، وتظهر صورًا لعظام المخلوقات الحيّة، سماها رونتجن أشعة X. ولاكتشاف ما إذاكانت هناك علاقة بين أشعة X والأشعة الصادرة من اليورانيوم، بدأت العالمة ماري كوري دراسة مركبات اليورانيوم، حيث قاد بحثها إلى فرضية مفادها أنّ الإشعاعات خاصية ذرية من خصائص المادّة، حيث تطلق ذرات بعض العناصر إشعاعات وتتحول إلى ذرات عناصر أخرى. وقد تحدّت هذه الفرضية المعتقدات السائدة في ذلك الوقت، والتي كانت تقول إنّ الذرة غير قابلة للانقسام أو التحوّل.

الأكواخ البالية

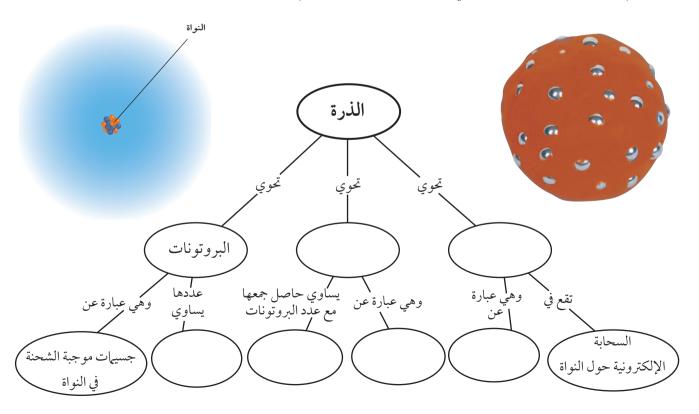
أصبح زوج ماري كوري بعد ذلك مهتمًّا بأبحاثها؛ فقد أشركها في دراساته عن المغناطيسية، فقاما بعدة اختبارات ودراسات فيما سمي «دراسة الأكواخ البالية». وقد اكتشفا من خلالها أنّ خام اليورانيوم المُسمّى البيتشبلند pitchblende أكثر إشعاعًا من اليورانيوم النقي نفسه، فافترضا أنّ عنصرًا أو أكثر من العناصر المشعة المكتشفة يجب أن يكون جزءًا من هذا الخام. وحققا من خلال هذا حلم كل عالم بإضافة عناصر جديدة إلى الجدول الدوري، بعد أن عزلا عنصري اليورانيوم والبولونيوم من خام البيتشبلند.

وفي عام ١٩٠٣م تقاسم العالمان بيير وماري كوري جائزة نوبل في الفيزياء مع هنري بكريل مكتشف أشعة اليورانيوم؛ لإسهاماتهم في أبحاث الإشعاعات. وكانت ماري كوري المرأة الوحيدة التي حصلت على جائزة نوبل، كما حصلت عليها مرة أخرى عام ١٩١١م في الكيمياء لأبحاثها حول عنصر الراديوم ومركباته.

العلوم عبر المواقع الإلكترونية الرجع إلى المواقع الإلكترونية عبر شبكة الإنترنت.

استكشف ابحث في أعمال العالم إرنست رذر فورد الحاصل على جائزة نوبل في الكيمياء عام ١٩٠٣م، واستخدم شبكة الإنترنت لوصف بعض اكتشافاته المتعلقة بالتحوّل، والإشعاع والبناء الذري.

مراجعـة الأفكار الرئيسـة


الدرس الأول نماذج الذرة

النواة

- ١. افترض جون دالتون أنّ الذرة عبارة عن كرة من المادة.
- ١. العدد الذري هو عدد البروتونات في نواة الذرة.
- اكتشف طومسون أنّ الذرات جميعها تحوى إلكترونات.
- ۲. النظائر ذرات للعنصر نفسه، لها أعداد نيوترونات مختلفة، وكل نظير له عدد كتلي مختلف.
- ٣. افترض رذرفورد أنّ معظم كتلة الذرة، وكلّ شحنتها الموجبة تتركز في نواة صغيرة جدًّا في مركز الذرة.
- ٣. مكونات الذرة متماسكة بواسطة القوة النووية الهائلة.
- نجد في النموذج الحديث للذرة أن النواة تتكون من نيوترونات وبروتونات، ومحاطة بسحابة إلكترونية.
- یتحلل بعض النوی عن طریق تحریر جسیمات ألفا،
 وتتحلّل نوی أخری عن طریق تحریر جسیمات بیتا.
 - ٥. عمر النصف هو مقياس لمعدل تحلّل النواة.

تصور الأفكار الرئيسة

أعد رسم الخريطة المفاهيمية التالية التي تتعلق بمكونات الذرة، ثم أكملها:

استعن بالصورة التالية للإجابة عن السؤال ١٠:

نواة البورون

- ١٠. إذا كان العدد الذري للبورون ٥ فإنّ نظير بورون-١١،
 يتكوّن من:
 - أ. ١١ إلكترونًا
 - ب. ٥ نيوترونات
 - ج. ٥ بروتونات و٦ نيوترونات
 - د. ۲ بروتونات و ۵ نیوترونات
 - ١١. العدد الذري لعنصر ما يساوي عدد:
 - أ. مستويات الطاقة ج. النيوترونات
 - ب. البروتونات د. جسيمات النواة
- 11. توصل طومسون إلى أنّ الضوء المتوهج من شاشات الـ CRT صادر عن سيل من الجسيمات المشحونة لأنها:
 - أ. خضراء اللون.
 - ب. شكّلت ظلَّا للأنود.
 - ج. انحرفت بواسطة مغناطيس.
 - د. حدثت فقط عند مرور التيار الكهربائي.

التفكيرالناقد

17. وضّح كيف يمكن لذرتين من العنصر نفسه أن يكون لهما كتلتان مختلفتان؟

استخدام المفردات

جسيمات ألفا العدد الذري البروتون عمر النصف جسيمات بيتا سحابة إلكترونية الأنود النيوترون الإلكترونات العدد الكتلي العنصر التحلل الإشعاعي النظير الكاثود الكاثود التحول

املاً الفراغات فيما يلى بالكلمات المناسبة:

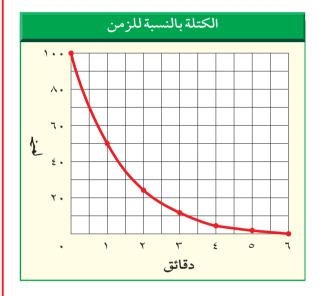
- 1. بحسيم متعادل الشحنة في النواة.
- ٢. مادّة مكوّنة من نوع واحد من الذرات.
- ۳. مجموع عدد البروتونات والنيوترونات في نواة الذرة.
 - ٤.بجسيمات سالبة الشحنة.
- ٥. عملية تحرير الجسيمات والطاقة من النواة.
 - ٦. سانت عدد البروتونات في الذرة.

تثبيت المفاهيم

اختر الإجابة الصحيحة في كل مما يلي:

- ٧. خلال عملية تحلّل بيتا، يتحوّل النيوترون إلى بروتون و:
 - أ. نظير ج. جسيم ألفا
 - ب. نواة د. جسيم بيتا
 - ٨. ما العملية التي يتحوّل فيها عنصر إلى عنصر آخر؟
 أ. عمر النصف ج. التفاعل الكيميائي
 ب. سلسلة التفاعلات د. التحول
- ٩. تُسمّى ذرات العنصر نفسه التي لها أعداد نيوترونات مختلفة:
 - أ. بروتونات ج. أيونات
 - ب. نظائر د. إلكترونات

مراجعة الفصل


تطبيق الرياضيات

٢٣. عمر النصف إذا علمت أنّ فترة عمر النصف لأحد النظائر هي سنتان، فكم يتبقى منه بعد مرور للنظائر هي سنوات؟

أ. النصف ب.الثلث

ج. الرُّبع د. لا شيء

استعن بالرسم التالي للإجابة عن السؤال ٢٤.

1. ٢٤ التحلّل الإشعاعي ما فترة عمر النصف لهذا النظير اعتمادًا على الرسم البياني؟ وما كمية النظير المتبقية بالجرامات بعد مرور ثلاث فترات من عمر النصف؟

- 11. وضّح. في الظروف العادية، المادّة لا تفنى ولا تستحدث. ولكن، هل من الممكن أن تزداد كمية بعض العناصر في القشرة الأرضية أو تقل؟
- 10. اشرح لماذا يكون عدد البروتونات والإلكترونات في الذرة المتعادلة متساويًا؟
- 17. قارن بين نموذج دالتون للذرة والنموذج الحديث للذرة. استخدم الصورة التالية للإجابة عن السؤال ١٧.

- 1۷. وضح كيف يمكن للتأريخ الكربوني أن يساعد على تحديد عمر الحيوان أو النبات الميت؟
- ١٨. توقع. إذا افترضنا أنّ نظير راديوم ٢٢٦ يحرّر جسيمات ألفا، فما العدد الكتلي للنظير المتكوّن؟
- 19. خريطة مفاهيمية. ارسم خريطة مفاهيمية تتعلق بتطوّر النظرية الذرية.
- ٢٠. توقع. إذا افترضنا أنّ العدد الكتلي لنظير الزئبق هو
 ٢٠١، فما عدد البروتونات والنيوترونات فيه؟

أنشطة تقويم الأداء

- ٢١. صمّم ملصقًا يوضح أحد نماذج الذرة، ثمّ اعرضه على زملائك في الصف.
- ٢٢. ثعبة. ابتكر لعبة توضّح فيها عمليّة التحلّل الإشعاعي.

2

الفكرة العامة

يقدُم الجدول الدوري معلومات عن جميع العناصر المعروفة.

الدرس الأول

مقدمة في الجدول الدوري الفكرة الرئيسة تُرتَّب العناصر في الجدول الدوري حسب تزايد أعدادها الذرية.

الدرس الثاني

العناصر الممثلة

الفكرة الرئيسة العناصر الممثلة ضمن مجموعة واحدة لهاصفات متشابهة.

الدرس الثالث

العناصر الانتقالية

الفكرة الرئيسة العناصر الانتقالية فلزات لها استعمالات متعددة.

الجدول الدوري

ناطحات السحاب، وأضواء النيون، والجدول الدوري

توجد ناطحات السحاب في الكثير من المدن، ومن المدهش حقًّا أنّ كل شيء في هذه الصورة مصنوع من العناصر الطبيعية. وستتعلم في هذا الفصل المزيد عن العناصر والجدول الذي ينظّمها.

دفتر العلوم فكر في أحد العناصر التي سمعت عنها، واكتب قائمة بالخصائص التي تعرفها.

نشاطات تمهيدية

اصنع نموذجًا للجدول الدوري

تكتمل دورة القمر بعد أن يمر بأطواره خلال ٢٩,٥ يومًا، يكون خلالها بدرًا ثم هلالًا، ثم يعود مرة أخرى بدرًا. وتوصف مثل هذه الأحداث التي تمر وفق نمط متوقع ومتكرر بأنها «دورية». ما الأحداث الدورية التي يمكنك التفكير فيها؟

- ارسم على ورقة بيضاء شبكة مربعة (٤×٤)، بحيث يكون بها ٤ مربعات في كل صف، و٤ مربعات في كل عمود.
- سيعطيك معلمك ١٦ قصاصة ورقية بأشكال وألوان مختلفة. حدّد الصفات التي يمكنك من خلالها التفريق بين ورقة وأخرى.
- ضع قصاصة في كلّ مربع على أن يحوي كلّ عمود أوراقًا ذات صفات متشابهة.
- ٤. رتّب القصاصات في الأعمدة بحيث توضّح تدرّج الصفات.
- التفكير الناقد صف في دفتر العلوم، كيف تتغير الخصائص في الصفوف والأعمدة.

العلـــوم 🕙 عبر المواقع الإلكترونية

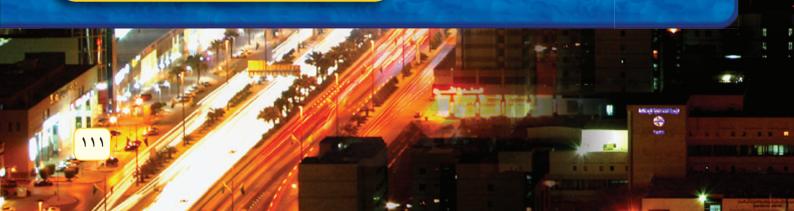
لمراجعة محتوى هذا الفصل وأنشطته ارجع إلى الموقع الإلكتروني www.obeikaneducation.com

المطويات

منظمات الأفكار

الجدول الدورى اعمل المطوية التالية لتساعدك على تصنيف العناصر في الجدول الدوري إلى فلزات ولافلزات وأشباه فلزات.

الخطوة ١ اطو قطعة من الورق رأسيًّا، مراعيًا أن تكون الحافة الأمامية أقصر من الحافة الخلفية بمقدار ٢٥, ١سم.


> الخطوة ٢ اطو الأطراف السفلية للأوراق ليصبح لديك ثلاث طيّات

متساوية.

الخطوة ٣ أعد الورقة كما كانت، واقطع الجزء العلوى فقط لتصنع ثلاثة أشرطة، ثم عنون كلّ شريط كما في الشكل التالي:

تحديد الأفكار الرئيسة من خلال قراءتك للفصل اكتب معلومات حول أنواع العناصر الثلاثة تحت الشريط المناسب، واستخدم هذه المعلومات لتوضّح أنّ لأشباه الفلزات خصائص مشابهة للفلزات واللافلزات.

أتهيأ للقراءة

الربط

أتعلم اربط ما تقرؤه مع ما تعرفه مسبقًا. وقد يعتمد هذا الربط على الخبرات الشخصية (فيكون الربط بين النص والشخص)، أو على ما قرأته سابقًا فيكون (الربط بين النصّ والنصّ)، أو على الأحداث في أماكن أخرى من العالم (فيكون الربط بين النص والعالم).

واسأل في أثناء قراءتك، أسئلة تساعدك على الربط، مثل: هل يذكرك الموضوع بتجربة شخصية؟ هل قرأت عن الموضوع من قبل؟ هل تذكرت شخصًا أو مكانًا ما في جزء آخر من العالَم؟

أندرّب اقرأ النصّ أدناه، ثم اربطه مع معرفتك الشخصية وخبراتك.

إذا تمعنت في الجدول الدوري ستجده ملونًا بألوان مختلفة تمثّل العناصر الفلزية حوغير الفلزية وغير الفلزية وأشباه الفلزات. وستلاحظ أنّ جميع الفلزات صلبة ما عدا الزئبق، ودرجة انصهار معظمها عالية. والفلز عنصر لامع، أي لديه قدرة على عكس الضوء، وموصل جيد للكهرباء والحرارة، وقابل للطَّرق والسَّحب، في فيضغط على هيئة صفائح رقيقة، أو يُسحب في

صورة أسلاك. صفحة ١١٨.

النص والشخص: ما الفلزات التي تستعملها يوميًّا؟

النص والنص: ماذا قرأت عن درجة الانصهار سابقًا؟

النص والعالم: هل سمعت عن الزئبق في الأخبار، أو رأيت مقياس حرارة زئبقي؟

أطبّق اختر في أثناء قراءتك هذا الفصل خمس كلمات أو عبارات يمكنك ربطها مع أشياء تعرفها.

اربط قراءتك مع أحداث بارزة، أو أماكن، أو أشخاص في حياتك، وكلما كان الربط أكثر دقة كان تذكرك لها أفضل.

توجيه القراءة وتركيزها

ركز على الأفكار الرئيسة عند قراءتك الفصل باتباعك ما يلى:

- **قبل قراءة الفصل** أجب عن العبارات الواردة في ورقة العمل أدناه:
 - اكتب (م) إذا كنت موافقًا على العبارة.
 - اكتب (غ) إذا كنت غير موافق على العبارة.
- **الفصل** ارجع إلى هذه الصفحة لترى إن كنت قد غيّرت رأيك حول أي من هذه العبارات.
 - إذا غيرت إحدى الإجابات فبيّن السبب.
 - صحّح العبارات غير الصحيحة.
 - استرشد بالعبارات الصحيحة في أثناء دراستك.

بعد القراءة م أوخ	العبارة	قبل القراءة م أوغ
	١. اكتشف العلماء كلّ العناصر التي كان يحتمل وجودها.	
	 ٢. ترتب العناصر في الجدول الدوري وفقًا الأعدادها الذرية وأعدادها الكتليّة. 	
	٣. لعناصر المجموعة الواحدة خصائص متشابهة.	
	 ٤. تقع الفلزات في الجهة اليمنى من الجدول الدوري. 	
	 عندما يُكتشف عنصر جديد يتم تسميته وفق نظام التسمية الذي وضعه الاتحاد العالمي للكيمياء البحتة والتطبيقية "الأيوباك" IUPAC. 	
	 ٦. الفلزات فقط توصل الكهرباء. 	
	٧. نادرًا ما تتحد الغازات النبيلة مع غيرها من العناصر.	
	 ٨٠ تتكوّن العناصر الانتقالية من فلزات و لافلزات وأشباه فلزات. 	
	٩. يمكن تصنيع بعض العناصر في المختبر.	

مقدمة في الجدول الدوري

في هذا الدرس

الأهداف

- تصف تاريخ الجدول الدوري.
- تفسر المقصود بمفتاح العنصر.
- توضح كيفية تنظيم الجدول الدوري.

الأهمية

يُسهّل عليك الجدول الدوري الحصول على معلومات حول كلّ عنصر.

🤉 مراجعة المغردات

العنصر مادّة لا يمكن تجزئتها إلى موادّ أبسط.


المفردات الجديدة

- الدورة
- المجموعة
- العناصر الممثلة
- العناصر الانتقالية
 - الفلز
 - اللافلزات
 - أشباه الفلزات

تطوّر الجدول الدورى

عرف الناس في الحضارات القديمة بعض الموادّ التي تُسمّى عناصر، فصنعوا القطع النقدية والمجوهرات من الذهب والفضة، كما صنعوا الأدوات والأسلحة من النحاس والقصدير والحديد. وبدأ الكيميائيون في القرن التاسع عشر البحث عن عناصر جديدة، حتى تمكنوا عام ١٨٣٠م من فصل وتسمية ٥٥ عنصرًا. ومازال البحث عن عناصر جديدة مستمرًا حتى يومنا هذا.

جدول مندليف للعناصر نشر العالم الروسي ديمتري مندليف عام ١٨٦٩ م النسخة الأولى من جدوله الدوري، انظر الشكل ١. وقد رتّب العناصر حسب تزايد أعدادها الكتلية. وقد لاحظ مندليف النمطية في الترتيب؛ حيث يكون للعناصر التي في مجموعة واحدة خصائص متشابهة. إلا أنه في ذلك الوقت لم تكن جميع العناصر معروفة، فكان عليه أن يترك ثلاثة فراغات في جدوله لعناصر كانت مجهولة؛ فقد توقع خصائص هذه العناصر المجهولة. وقد شجعت توقعاته الكيميائيين على البحث عن هذه العناصر، فاكتُشفت العناصر الثلاثة خلال ١٥ سنة، وهي الجاليوم والسكانديوم والجرمانيوم.

الشكل ١ الجدول الدوري الذي نشره مندليف عام ١٨٦٩م. وقد صدر هذا الطابع الذي يحمل صورة الجدول الدوري وصورة مندليف عام ١٩٦٩م، بوصفه تذكارًا للحدث. لاحظ وجود علامات استفهام مكان العناصر المجهولة التي لم تكن مكتشفة.

إسهامات موزلي رغم أنّ معظم العناصر المكتشفة رُتبت بشكل صحيح في جدول مندليف إلا أن بعضها كان يبدو خارج مكانه الصحيح. وفي مطلع القرن العشرين أدرك الفيزيائي الإنجليزي هنري موزلي قبل أن يتم ٢٧ عامًا من عمره، أنه يمكن تحسين وتطوير جدول مندليف إذا رُتبت العناصر حسب أعدادها الذرية، وليس حسب كتلها الذرية، وعندما عدَّل موزلي الجدول الدوري تبعًا للتزايد في عدد البروتونات في النواة تبيّن له أنّ هناك الكثير من العناصر التي لم تكتشف بعد.

الجدول الدورى الحديث

تم ترتيب العناصر في الجدول الدوري الحديث حسب تزايد أعدادها الذرية. وقد وضعت العناصر في سبع دورات مرقمة (١-٧). والدورة Period صفّ أفقي في الجدول الدوري يحتوي على عناصر تتغير خصائصها بشكل تدريجي يمكن توقعه. كما يتكوّن الجدول الدوري من ١٨ عمودًا، وكل عمود يتكوّن من مجموعة أو عائلة من العناصر. وعناصر المجموعة Group الواحدة تتشابه في خصائصها الفيزيائية والكيميائية.

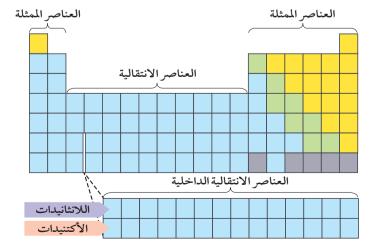
مناطق الجدول الدوري إلى مناطق كما هو مبين في الشكل ٢، وتشمل المنطقة الأولى المجموعتين ١ و ٢، والمجموعات مبين في الشكل ٢، وتشمل المنطقة الأولى المجموعتين ١ و ٢، والمجموعات الثماني العناصر المحموعات الثماني العناصر المخافة المكونة من عناصر المجموعات الثماني العناصر الممثلة Representative elements، وفيها فلزات، ولأفلزات، وأشباه فلزات. أمّا العناصر في المجموعات ٣-١٢ فتُسمّى العناصر الانتقالية موجودة أسفل المجاول الدوري، ومنها مجموعتا الأكتنيدات واللانثانيدات؛ لأنّ إحداهما تتبع عنصر اللانثانيوم وعدده الذري ٥٧، والأخرى تتبع عنصر الأكتينيوم الذي عدده الذري ٨٩.

تجربة

تصميم جدول دوري

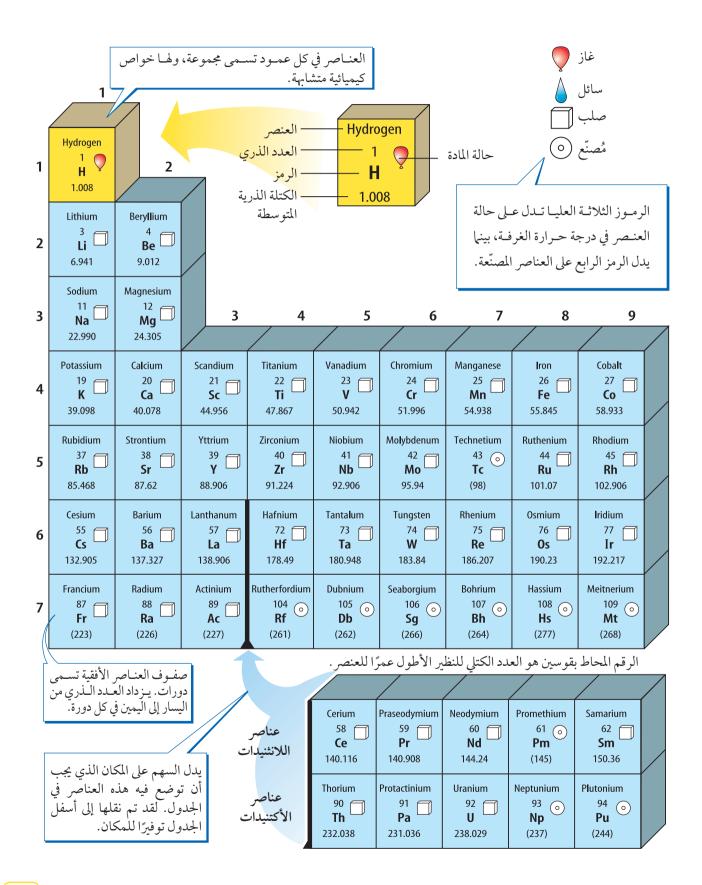
الخطوات

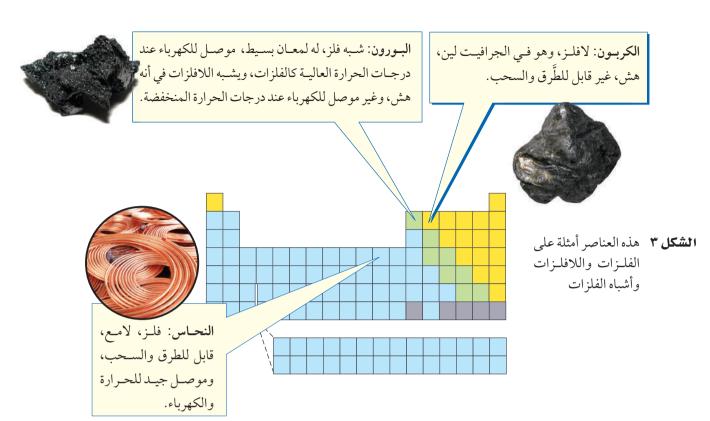
- اجمع أقلام الحبر والرصاص من طلاب الصف.
- حدد الصفات المعتمدة لترتيب الأقلام في الجدول الدوري.


قد تختار صفات، منها اللون والكتلة والطول، ثم تنشئ جدولك.

التحليل

- اشرح أوجه التشابه بين جدولك الدوري للأقلام والجدول الدوري للعناصر.
- لو أحضر زمالاؤك أقلامًا مختلفة في اليوم التالي فكيف ترتبها في جدولك الدوري؟


الشكل ٢ الجدول الدوري مقسم إلى مقاطع. وكما ترى، توضع الأكتنيدات واللانثانيدات أسفل الجدول حتى لا يصبح الجدول عريضًا جدًّا، ولها صفات متشابهة.


حدّد العناصر الانتقالية والعناصر الانتقالية الداخلية.

الجدول الدوري للعناصر

فاد									
شبه فلز								18	
لافلز								Helium	
	<u> </u>		13	14	15	16	17	He P	
	ِن صندوق كل							4.003	
لز أو لافلزًّا.	، فلزًّا أو شبه فل	إذا كان	Boron 5 B	Carbon 6 C	Nitrogen 7 N	Oxygen 8	Fluorine 9 F	Neon 10	
			10.811	12.011	N 14.007	0 * 15.999	F 18.998	Ne [*] 20.180	/
			Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon	
10	11	12	13 AI	14 Si	15 P	16 S	17 CI	18 Q Ar	
			26.982	28.086	30.974	32.065	35.453	39.948	
Nickel	Copper	Zinc	Ga ll ium	Germanium	Arsenic	Selenium	Bromine	Krypton 36	
28 Ni	29 Cu 63.546	30 Zn 65.409	31 Ga 69.723	32 Ge 72.64	33 As 74.922	34 Se 78.96	35 Br 79.904	Kr 83.798	
Palladium 46 Pd	Silver 47 Ag	Cadmium 48 Cd	Indium 49 In	50 Sn	Antimony 51 Sb	Tellurium 52 Te	Iodine 53	Xenon 54 Xe	
Pd → 106.42	107.868	112.411	114.818	118.710	121.760	127.60	126.904	131.293	
Platinum	Go l d	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon	
78 Pt	79 Au	80 A	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
195.078	196.967	200.59	204.383	207.2	208.980	(209)	(210)	(222)	
Darmstadtium	Roentgenium	Ununbium * 112		Ununquadium * 114 Uua				Ununoctium * 118	
110 O Ds (281)	Rg (272)	* 112 • Uub • (285)	* 113 • Uut (284)	Uuq (289)	* 115 Uup (288)	* 116 Uuh (291)		* 118 O Uuo (294)	
(201)		ر205) مند التأكد من اكتث					: العناء :		
								اسع) د رسو	
Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium	
63	64 🦳	65	66	67	68	69	70	71 🦳	
Eu 151.964	Gd 157.25	Tb 158.925	Dy 162.500	Ho 164.930	Er 167.259	Tm 168.934	Yb 173.04	Lu 174.967	
Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium	
95 Am	96 ⓒ Cm	97 ⊙	98 (99 (100 o Fm	101 ⊙	102 o No	103 <u>o</u> Lr	
(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	

العلاقات بين العناصر تجربة عملية ارجع إلى كراسة التجارب العملية

العناصر

ارجع إلى المواقع الإلكترونية عبر شبكة الإنترنت لتعرف كيفية تطور الجدول الدوري.

نشاط اختر عنصرًا، واكتب كيف تم اكتشافه؟ ومتى؟ ومن اكتشفه؟

الفلزات إذا تمعّنت في الجدول الدوري ستجده ملونًا بألوان مختلفة تمثّل العناصر الفلزية وغير الفلزية وأشباه الفلزات. انظر الشكل ٣ تلاحظ أنّ جميع الفلزات صلبة ما عدا الزئبق، ودرجة انصهار معظمها عالية. والفلز Metal عنصر لامع، أي لديه قدرة على عكس الضوء، وموصل جيد للكهرباء والحرارة، وقابل للطَّرق والسَّحب، فيُضغط على هيئة صفائح رقيقة، أو يُسحب في صورة أسلاك. اذكر عددًا من الأشياء المصنوعة من الفلزات؟

اللافلزات وأشباه الفلزات تكون اللافلزات عادة غازية أو صلبة هشة عند درجة حرارة الغرفة، ورديئة التوصيل للحرارة والكهرباء، وتشمل الا عنصرًا فقط، وتتضمن عناصر أساسية في حياتنا، منها الكربون والكبريت والنيتر وجين والأكسجين والفوسفور واليود.

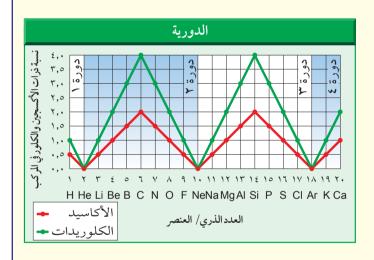
أمّا العناصر التي تقع في وسط الجدول الدوري بين الفلزات واللافلزات فتُسمّى أمّا العناصر التي تشترك في بعض صفاتها مع الفلزات وفي بعض صفاتها مع اللافلزات.

اعدد العناصر التي تعد الفلزات؟ ما عدد العناصر التي تعد الفلزات؟

العنصر العنصر 1 العنصر العدد الذري H الرمز 1.008

مفتاح العنصر يُمثّل كلّ عنصر في الجدول الدوري بصندوق يُسمّى مفتاح العنصر، كما هو موضّح في الشكل ٤ لعنصر الهيدروجين. وهذا المفتاح يُبين اسم العنصر وعدده الذري ورمزه وكتلته الذرية، وحالة العنصر (صلب أو سائل أو غازي) عند درجة حرارة الغرفة. ونلاحظ في الجدول

الدوري أنّ جميع الغازات _ ما عدا الهيدروجين _ تقع يمين الجدول، ويشار إليها ببالون للدلالة على حالتها الغازية. ومعظم العناصر الأخرى صلبة، ويشار إليها بمكعب للدلالة على حالتها الصلبة عند درجة حرارة الغرفة. أمّا العناصر السائلة التي في الجدول الدوري فهما عنصران فقط، وترمز القطرة إلى وجود العنصر في الحالة السائلة. وأما العناصر التي لا توجد على الأرض بشكل طبيعي، أي العناصر المصنعة، فيشار لها بدوائر كبيرة وبداخلها دوائر صغيرة.


الشكل ؟ كما تلاحظ من مفتاح العنصر، يمكنك الحصول على الكثير من المعلومات من خلال الجدول الدوري.

حدّد العنصرين السائلين عند درجة حرارة الغرفة.

تطبيق العلوم

ما الذي تعنيه دورية الصفات في الجدول الدوري؟

تتحد العناصر عادة بالأكسجين لتكوين الأكاسيد، كما تتحد بالكلور لتكوين الكلوريدات، فمثلاً عند اتحاد ذرتي هيدروجين مع ذرة أكسجين يتكون الماء H_2O 0, أمّا عند اتحاد ذرة صوديوم مع ذرة كلوريد الصوديوم أو ملح الطعام NaCl. إنّ موقع العنصر في الجدول الدوري يدلّ على كيفية اتحاده مع عناصر أخرى.

تحديد المشكلة

يوضّح الرسم البياني عدد ذرات الأكسجين (باللون الأحمر) وعدد ذرات الكلور (باللون الأخضر) التي تتحد مع أول ٢٠ عنصرًا من الجدول الدوري. ما النمط الذي تلاحظه؟

حل المشكلة

- حدد جميع عناصر المجموعة الأولى التي في الرسم البياني، وكذلك عناصر المجموعات ١٤ و ١٨. ماذا تلاحظ على مواقعها بالرسم البياني؟
- توضّح هذه العلاقة إحدى خصائص المجموعة. تتبع عناصر الجدول الدوري على الرسم البياني بالترتيب،
 واستخدم كلمة دوريّة في كتابة عبارة تصف فيها ما يحدث للعنصر وخصائصه.

بميائية وأصل تسميتها	الرموز الك	الحدول ١
أصل التسمية	الرمز	العنصر
من اسم العالم مندليف.	Md	مندليفيوم
الاسم اللاتيني Plumbum.	Pb	الرصاص
اسم ديني عند الإغريق.	Th	ثوريوم
على اسم البلد بولندا حيث ولدت ماري كوري.	Ро	بولونيوم
كلمة إغريقية Water former تعني "مكوّن الماء".	Н	هيدروجين
Haydrargyrum علمة إغريقية تعني "السائل الفضي".	Hg	الزئبق
Aurum كلمة لاتينية تعني "بزوغ الضوء".	Au	الذهب
حسب تسمية نظام الأيوباك	Uuu	Unununium

رموز العناصر تكتب رموز العناصر بحرف أو حرفين، وتكون غالبًا مبنية أو مُشتقة من اسم العنصر. فالحرف V مثلاً اختصار لاسم العنصر باللغة الإنجليزية Vanadium مثلاً اختصار لاسم العنصر Scandium، وأحيانًا نجد والحرفان Sc اختصار للعنصر العنصر؛ فمثلاً يرمز للفضة أنّ الأحرف لا تتطابق مع اسم العنصر؛ فمثلاً يرمز للفضة Sodium بالرمز AB، وكذلك يرمز للصوديوم الموز؟ قد يشتق الرمز بالرمز الاسم اللاتيني أو الإغريقي للعنصر، أو من أسماء من الاسم اللاتيني أو الإغريقي للعنصر، أو من أسماء العلماء أو بلدانهم كالفرانسيوم Fr والبولونيوم PO. أمّا الآن فتُعطى العناصر المصنعة أسماء مؤقتة، ورموزًا بثلاثة أحرف مرتبطة مع العدد الذري للعنصر. وقد تبنى الاتحاد العالمي للكيمياء البحتة والتطبيقية "IUPAC" هذا النظام عام ۱۹۷۸ م. وعند اكتشاف عنصر ما يحقّ للمكتشفين اختيار اسم دائم له. والجدول ١ يوضّح أصل تسمية بعض العناصر.

مراجعة الدرس

الخلاصة

تطور الجدول الدوري

- نشر ديمتري مندليف أول نسخة من الجدول الدوري عام ١٨٦٩م.
- ترك مندليف ثلاثة فراغات لعناصر لم تكن مكتشفة بعد.
- رتب موزئي الجدول الدوري لمندليف بناءً على
 العدد الذري وليس الكتلة الذرية.

الجدول الدوري الحديث

- الجدول الدوري مقسم إلى قطاعات.
- الدورة صف من العناصر التي تتغير خصائصها تدريجيًا بشكل يمكن توقعه.
- المجموعتان (۱ و ۲) والمجموعات (۱۳ ۱۸) تُسمّی عناصر ممثلة.
 - المجموعات (٣- ١٢) تُسمّى عناصر انتقالية.

اختس نفسك

- قوم كيف تتغير الصفات الفيزيائية لعناصر الدورة الرابعة عند تزايد العدد الذرى؟
- حف مواقع الفلزات واللافلزات وأشباه الفلزات في الجدول الدوري.
- ٣. صنّف العناصر التالية إلى: فلز ولا فلز وشبه فلز: Fe ، Li ، B ، Cl ، Si ، Na ، Ni
 - اكتب قائمة بها يحويه صندوق مفتاح العنصر.
- •. التفكير الناقد ما الاختلاف الذي يطرأ على الجدول الدوري إذا رتبت عناصره حسب الكتلة الذرية؟

تطبيق الرياضيات

7. حلّ معادلة بخطوة واحدة ما الفرق بين الكتلة الذرية لليود والماغنسيوم؟

العناصر الممثلة

المجموعتان ۲،۱

توجد عناصر المجموعتين ١، ٢ في الطبيعة دائمًا متحدة مع عناصر أخرى، وتعرف بالفلزات النشطة؛ بسبب ميلها إلى الاتحاد بعناصر أخرى لتكوين مواد جديدة. وجميع عناصرها فلزات ما عدا الهيدروجين، الذي يقع في المجموعة الأولى. وعلى الرغم من ذلك فإنّ صفاته تشبه عناصر المجموعة ١ وعناصر المجموعة ١٧.

الفلزات القلوية تُسمَّى عناصر المجموعة الأولى الفلزات القلوية Alkali metals و هي لامعة و صلبة، ولها كثافة منخفضة و درجة انصهار منخفضة أيضًا. وكلَّما انتقلنا من أعلى إلى أسفل في الجدول الدوري يزداد نشاط هذه العناصر، وميلها إلى الاتحاد مع عناصر أخرى. ويوضّح الشكل ٥ موقع هذه العناصر في الجدول الدوري، وبعض المواد التي توجد فيها.

تتوافر الفلزات القلوية في كثير من الموادّ التي نحتاج إليها، فعلى سبيل المثال يوجد الليثيوم في بطاريات الليثيوم المستعملة في الكاميرات. ويوجد فلز الصوديوم في مركب كلوريد الصوديوم المعروف بملح الطعام. والصوديوم والبوتاسيوم ضروريان لأجسامنا، وهما موجودان

بكميات قليلة في البطاطا والموز.

Lithium المجموعة ١ الفلزات القلوية Li Sodium Na Potassium Rubidium Cesium Francium

Fr

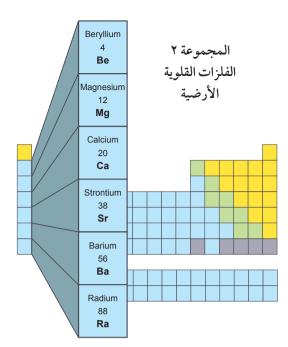
فهء هذا الدرس

الأهداف

- تتعرّف خصائص العناصر
- تحدد استخدامات العناصر
- تصنف العناصر إلى مجموعات، بناءً على تشابه خصائصها.

الأهمية

• للعناصر الممثلة دور أساس في جسمك والبيئة المحيطة والأشياء التي تتعامل معها يوميًّا.


🤉 مراجعة المفردات

العدد الذري عدد البروتونات في نواة العنصر.

المفردات الجديدة

- الفلزات القلوية
- الفلزات القلوية الأرضية
 - أشباه الموصلات
 - الهالوجينات
 - الغازات النبيلة

الشكل ٥ مواد تحتوي على عناصر قلوية.

الشكل ٦ عناصر المجموعة الثانية توجد في الكثير من الأشياء، فالبريليوم موجود في الزمرد، والزبرجد، أمّا الماغنسيوم فيوجد في كلوروفيل النباتات الخضراء.

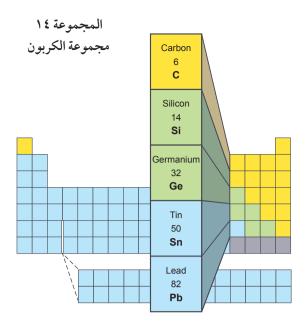
الدورية تملية الج إلى كراسة التجارب العملية

يستخدم الألومنيوم في صناعة النوافذ.

Boron
5
B
Aluminum
13
Al

Gallium
31
Ga
Indium
49
In

Thallium
81


الفلزات القلوية، وتوجد في المجموعة ٢. وتمتاز الفلزات القلوية الأرضية Alkaline earth metals بأنّها المجموعة ٢. وتمتاز الفلزات القلوية الأرضية أكثر كثافة وصلابة، وذات درجات انصهار عالية مقارنة بالفلزات القلوية، وهي عناصر نشطة أيضًا، ولكن ليست بمثل نشاط عناصر الفلزات القلوية. ويوضّح الشكل ٦ تواجد بعض الفلزات القلوية الأرضية في الطبيعة.

ما أسماء العناصر التي تنتمي إلى مجموعة الفلزات القلوية الأرضية؟

المجموعات ۱۳ – ۱۸

لاحظ أنّ العناصر في المجموعات ١٣ - ١٨ في الجدول الدوري ليست جميعها صلبة، كما هو الحال في عناصر المجموعتين الأولى والثانية. وسوف تجد أنّ هناك مجموعة واحدة تضم فلزات ولافلزات وأشباه فلزات وتوجد في حالات المادة الثلاث الصلبة والسائلة والغازية.

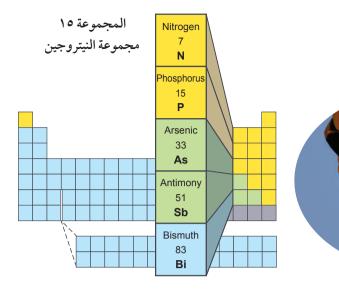
المجموعة ١٣ – عائلة البورون الذي هو شبه فلز أسود وهش. وتستخدم عناصر صلبة، ما عدا البورون الذي هو شبه فلز أسود وهش. وتستخدم عناصر هذه العائلة في صناعة بعض المنتجات؛ فوعاء الطهي المصنوع من البورون يمكننا نقله مباشرة من الثلاجة إلى الفرن دون أن ينكسر. ويستخدم الألومنيوم في صناعة علب المشروبات الغازية وأواني الطهي وهياكل الطائرات ومن عناصر هذه المجموعة أيضًا فلز الجاليوم الصلب، الذي له درجة انصهار منخفضة جدًّا؛ فقد ينصهر إذا وضعته في يدك، ويستعمل الجاليوم في صناعة رقاقات الحاسوب.

المجموعة الرابعة عشرة ستجد أن الكربون من العناصر اللافلزية، المجموعة الرابعة عشرة ستجد أن الكربون من العناصر اللافلزية، بينما عنصرا السليكون والجرمانيوم أشباه فلزات، والقصدير والرصاص فلزات. ولعنصر الكربون أشكال مختلفة، منها الماس والجرافيت، كما أنّه يوجد أيضًا في أجسام المخلوقات الحية. ويلي الكربون في الجدول الدوري السليكونُ شبه الفلز المتوافر في الرمال بكثرة؛ حيث يحتوي الرمل على معادن، منها الكوارتز الذي يتكوّن من الأكسجين والسليكون. ويعد الرمل مكوّنًا أساسيًا في صناعة الزجاج.

والسليكون والجرمانيوم من أشباه الفلزات، ويستخدمان في صناعة الأجهزة الإلكترونية بوصفهما أشباه موصلات. وأشباه الموصلات

Semiconductors مواد توصل الكهرباء بدرجة أقل من الفلزات، وأكثر من اللافلزات. ويدخل السليكون مع كميات قليلة من عناصر أخرى في صناعة رقاقات الحاسوب.

ونجد في المجموعة الرابعة عشرة أيضًا الرصاص والقصدير، وهما أثقل عناصر المجموعة. وللرصاص استخدامات مهمة في الطب؛ فهو يستعمل لوقاية الجسم من أشعة X في أثناء تصوير الأسنان، كما في الشكل ٧، ويدخل أيضًا في صناعة بطاريات السيارة، وفي السبائك التي درجات انصهارها منخفضة، كما يُتخذ جدارًا واقيًا لمنع تسرب الإشعاعات الضارة ؛ كما في المفاعلات النووية، والمسرّعات النووية، وفي معدات أجهزة أشعة X، وأيضًا في الحاويات التي تستخدم في حفظ ونقل المواد المشعة. أمّا القصدير فيستخدم في حشو الأسنان، وفي طلاء علب حفظ الأطعمة الفولاذية من الداخل.


الشكل ٧ عناصر المجموعة الرابعة عشرة تتكون من عنصر واحد لافلزي، وعنصرين من أشباه الفلزات، وعنصرين من

يستخدم الرصاص واقيًا للجسم من أشعة X غير المرغوب فيها.

تستخدم بلورات السليكون في صناعة رقاقات الحاسوب.

الشكل ٨ تستخدم الأمونيا في صناعة النيلون، ذلك الفيبر الخفيف والقوى، القادر على أن يحل محل الحرير في أيّ استعمال، حتى في المظلات.

المزارعون

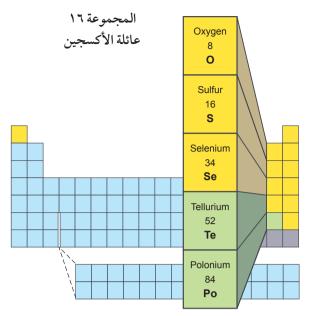
يفحص المزارعون كل عام التربة ليحددوا مستوى المواد المغذية فيها، تلك المواد التي تحتاج إليها النباتات حتى تنمو. وتساعدهم نتيجة الفحص على تحديد الكمية المناسبة التي تضاف إلى التربة من النيتروجين والفوسفور والبوتاسيوم؛ لزيادة احتمال الحصول على محاصيل جيدة.

الشكل ٩ يعد الفوسفور ضروريًا للنبات؛ لذا يستعمل في صناعة الأسمدة.

المجموعة ١٥ – مجموعة النيتروجين نجد في أعلى المجموعة الخامسة عشر عنصرين لافلزين هما النيتروجين والفوسفور، وهما ضروريان للمخلوقات الحية، ويدخلان في تركيب المواد الحيوية التي تعمل على تخزين المعلومات الجينية والطاقة في الجسم. كما يدخلان في الكثير من الصناعات. ورغم أنّ أكثر من ٨٠٪ من الهواء الذي نتنفسه نيتروجين إلا أنّنا لا نستطيع أخذ حاجة الجسم من النيتروجين عند استنشاقه؛ إذ يجب أولاً أن تحوِّل البكتيريا غاز النيتروجين إلى موادّ يسهل على جـذور النباتات امتصاصها، ثـم يأخذ الجسـم حاجته من النيتر وجين بتناوله للنبات.

هل يستطيع جسمك الحصول على النيتروجين عند تنفس الهواء الجوي؟ وضح ذلك.

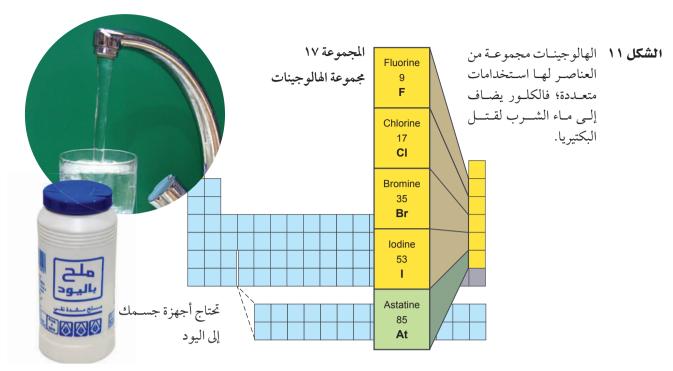
يحتوي غاز الأمونيا على النيتروجين والهيدروجين، ويستخدم منظَّفًا ومطهِّرًا للجراثيم عند إذابته في الماء. وتضاف الأمونيا السائلة إلى التربة بوصفها سمادًا، ويمكن تحويلها إلى سماد صلب. وتستخدم الأمونيا أيضًا في تجميد الطعام وتجفيفه كما في الثلاجات (الفريزر)، وفي صناعة النيلون المستخدم في المظلات، كما في الشكل ٨.


هناك نوعان من الفوسفور، هُما الأحمر والأبيض، إلاَّ أنَّ الفوسفور الأبيض أكثر نشاطًا؛ لذلك يجب ألاّ يتعرّض للأكسجين؛ حتى لا ينفجر. ولذلك تصنع رؤوس أعواد الثقاب من الفوسفور الأحمر الأقلِّ نشاطًا؛ فهو يشتعل بفعل الحرارة الناتجة عن احتكاك عود الثقاب. ومركبات الفوسفور مكوّن أساسي في صحة الأسنان والعظام. وتحتاج النباتات كذلك إلى الفوسفور، لذلك نجد الفوسفور من المكوّنات الأساسيّة للأسمدة انظر الشكل ٩. المجموعة ١٦ - عائلة الأكسجين إذا نظرنا في عناصر المجموعة ١٦ فسنجد أنّ أول عنصرين فيها هما الأكسجين والكبريت، وهما أساسيّان في الحياة. بينما العناصر الأثقل في المجموعة هما التيلوريوم والبولونيوم، وهما أشباه فلزات.

يكون الأكسجين الذي نتنفسه حوالي ٢٠٪ من الغلاف الجوي. ويحتاج الجسم إلى الأكسجين لإنتاج الطاقة من الغذاء الذي نتناوله، كما يدخل الأكسجين في تركيب الصخور والمعادن، وهو ضروري للاشتعال. وتكمن أهمية استخدام الرغوة في إطفاء الحرائق أنها تعزل الأكسجين عن المواد المشتعلة، كما تلاحظ في الشكل ١٠. والأوزون هو الشكل الأقل شيوعًا للأكسجين؛ حيث يتكون في طبقات الجو العليا بتأثير الكهرباء في أثناء حدوث العواصف الرعدية. والأوزون ضروري لحماية المخلوقات الحية من الإشعاعات الشمسية الضارة.

أمّا الكبريت فهو لافلز صلب، أصفر اللّون، يستخدم بكميات كبيرة في صناعة حمض الكبريت الحمض الأكثر استخدامًا في العالم، والذي يتكوّن من اتحاد الكبريت والأكسجين والهيدروجين؛ حيث يستخدم حمض الكبريتيك في الكثير من الصناعات، ومنها صناعات الطلاء والأسمدة والمنظفات والأنسجة الصناعية والمطاط.

أمّا السيلينيوم فهو موصل للكهرباء عند تعرضه للضوء، ولذلك يستخدم في الخلايا الشمسية وعدادات الضوء. ونظرًا إلى شدة حساسيته للضوء يستخدم في آلات التصوير الضوئي.

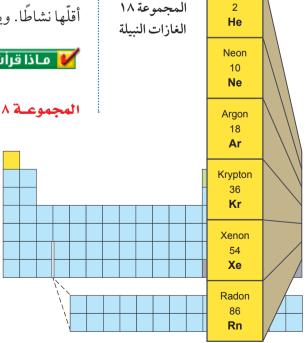


تراكم السموم

من المعروف أنّ الزرنيخ يعطل وظائف المخلوق الحي الحيوية؛ وذلك بتعطيل عمليات الأيض. ولأنّ الزرنيخ يتراكم في الشعر فإن الطب الجنائي يتمكن من اكتشاف حالات التسمم بالزرنيخ عن طريق فحص عينات من الشعر. فعندما فحصت عينة من شعر نابليون ألطب الجنائي تسممه بالزرنيخ. الطب الجنائي تسممه بالزرنيخ. شخصية نابليون، وعن سبب قيام أحدهم بتسميمه بالزرنيخ.

الشكل ١٠ تشكّل الرغوة طبقة عازلة للأكسجين فتحاصر النيران.

المجموعة ١٧- مجموعة الهالوجينات جميع عناصر هذه المجموعة لافلزات ما عدا الأستاتين؛ فهو شبه فلز مشع، وقد سميت هذه المجموعة بالهالوجينات Halogens وتعني "مكونات الأملاح"، فنجد مثلاً أنّ ملح الطعام أو كلوريد الصوديوم مادة تتكوّن من الصوديوم والكلور. وتكوّن جميع عناصر هذه المجموعة أملاحًا مشابهة عند اتحادها مع الصوديوم أو مع أيّ عنصر من عناصر الفلزات القلوية.


أكثر عناصر المجموعة نشاطًا هو الفلور ثم الكلور فالبروم، ثم اليود الذي يعد أقلّها نشاطًا. ويوضّح الشكل ١١ بعض استخدامات الهالوجينات.

ته ماذا ينتج عن اتحاد الهالوجينات مع الفلزات القلوية؟

المجموعة ١٨- الغازات النبيلة تُسمّى عناصر المجموعة ١٨ الغازات النبيلة

Noble gases؛ لأنّها توجد في الطبيعة منفردة، ونادرًا ما تتحد مع عناصر أخرى بسبب نشاطها القليل جدًّا.

فالهيليوم عنصر أقبل كثافة من الهواء، ولا يشتعل، ولذلك يستخدم في ملء البالونات والمناطيد، ومنها المناطيد التي تحمل كاميرات لتصوير الأحداث الرياضية، أو التي تحمل أجهزة خاصة لقياس عناصر الطقس، كما في الشكل ١٢. ورغم أنّ الهيدروجين أخفّ من الهيليوم إلا أنّ الهيليوم يستخدم أكثر؛ لأنه لا يشتعل، مما يعني أنه آمن.

Helium

استخدامات الغازات النبيلة يستخدم غاز النيون وباقي الغازات النبيلة في اللوحات الإعلانية كما في الشكل ١٢. فعندما يمرّ التيار الكهربائي في الأنابيب التي تحتوي على هذه الغازات تتوهج الأنابيب بألوان مختلفة حسب نوع الغاز، فيتوهج الهيليوم بلون أصفر، والنيون بلون برتقالي مائل إلى الأحمر، بينما يتوهج الأرجون باللون الأزرق البنفسجي.

الأرجون هو الغاز النبيل الأكثر توافرًا في الطبيعة، وقد اكتشف عام ١٨٩٤م، ويستخدم الكربتون مع النيتروجين في مصابيح الإنارة العادية؛ لأنّ هذه الغازات تحفظ الفتيل (سلك التنجستون) من الاحتراق، وإذا استخدم مزيج من الكريبتون والأرجون والزينون في هذه المصابيح فإنّها تدوم فترة أطول. وتستخدم مصابيح الكربتون في إنارة أرضية مدارج المطارات.

ونجد في نهاية المجموعة الرادون، وهو غاز مشع ينتج بشكل طبيعي عند تحلّل اليورانيوم في التربة والصخور. وهذا الغاز مضرّ جدًّا؛ لأنّه يستمرّ في إطلاق الإشعاعات، وقد يسبب سرطان الرئة إذا استمرّ الناس في تنفس الهواء الذي يحوي هذا الغاز.

النبيلة في الإضاءة؟ للذا تستخدم الغازات النبيلة في الإضاءة؟

الشكل ١٢ للغازات النبيلة تطبيقات كثيرة. استخدم العلماء بالونات الهيليوم في قياس عناصر الطقس، وفي اللوحات الإعلانية.

السدرسي

اجعة ٢

الخلاصة

المجموعتان ۲،۱

- تتحد عناصر المجموعتين ١، ٢ مع عناصر أخرى.
- عناصر هذه المجموعات فلزات ما عدا الهيدروجين.
 - عناصر الفلزات القلوية الأرضية أقل نشاطًا من عناصر الفلزات القلوية.

المجموعات ١٣ – ١٨

- نجد في المجموعة الواحدة من هذه المجموعات ١٣ - ١٨ عناصر فلزية ولا فلزية وأشباه فلزات.
- النيتروجين والفوسفور ضروريان للمخلوقات الحية.
- تكون الهالوجينات أملاحًا مع الفلزات القلوية.

اختسر نفسك

- ١. قارن بين عناصر المجموعة ١ وعناصر المجموعة ١٧.
- ۲. اذكر استخدامين لعنصر واحد من عناصر كل جموعة من مجموعات العناصر الممثلة.
- ٣. حدّد مجموعة العناصر التي لا تتحد عناصرها مع عناصر أخرّى.
- التفكيرالناقد عنصر الفرانسيوم فلز قلوي نادر ومشع، يقع في أسفل المجموعة ١، ولم تدرس خصائصه جيدًا. هل تتوقع أن يتحد الفرانسيوم مع الماء بشكل أكبر من السيزيوم أم أقل؟

تطبيق المهارات

•. توقع ما قابلية عنصر الأستاتين لتكوين الملح مقارنة بباقي عناصر المجموعة ١٧، وهل هناك نمط لنشاط عناصر هذه المجموعة؟

العناصر الانتقالية

في هذا الدرس

الأهداف

- تحدّد خصائص بعض العناصر الانتقالية.
- تميز بين اللانثانيدات والأكتنيدات.

الأهمية

تستخدم العناصر الانتقالية في الكثير من الأشياء، ومنها الكهرباء في منزلك، والحديد للبناء.

🧟 مراجعة المفردات

العدد الكتلي مجموع عدد البروتونات والنيوترونات في نواة الذرة.

المفردات الجديدة

- العامل المحفز اللانثانيدات
- الأكتنيدات في العناصر المصنعة

الشكل ١٣ تحتوي البنايات والجسور على الفولاذ.

وضح لماذا يستخدم الفو لاذ في البناء؟

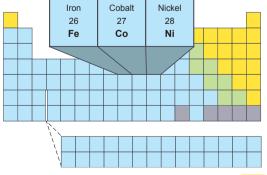
الفلزات

تُسمّى المجموعات ٣-١٢ العناصر الانتقالية، وجميعها فلزات. وإذا تتبعنا هذه الفلزات في الجدول الدوري من اليسار إلى اليمين سنجد أنّ خصائص هذه العناصر لا يحكمها نمط تغير واضح، مقارنة بالتغير الذي يحدث للعناصر الممثلة.

وتكون معظم العناصر الانتقالية متّحدة مع عناصر أخرى على هيئة خامات، وقد يكون بعضها حرًّا مثل الذهب والفضة.

شلاثية الحديد جاء ذكر الحديد في قول ه تعالى ﴿ لَقَدْ أَرْسَلْنَا رُسُلْنَا بِالْبَيِّنَاتِ وَأَنْزَلْنَا مَعَهُمُ الْكَابِ وَالْمِيزَاتَ لِيَقُومَ النَّاسُ بِالْقِسْطِ وَأَنْزَلْنَا الْمُهَدُ وَيهِ بَأْسُ شَدِيدٌ وَمُنَافِعُ لِلنَّاسِ وَلِيَعْلَمَ اللَّهُ مَن يَصُرُهُ، وَرُسُلَهُ، بِالْفَيْبُ إِنَّ اللَّهَ قَوَىُ عَزِيزٌ اللَّهُ الحديد.

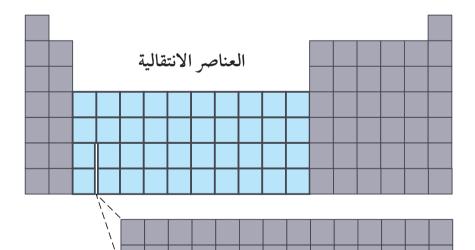
والحديد أكثر العناصر ثباتًا؛ وذلك لشدة تماسك مكونات النواة في ذرته، ويمتاز بخاصية مغناطيسية أقوى؛ فكمية الحديد الهائلة التي أوجدها الله جلت قدرته في باطن الأرض تؤدي دورًا مهمًّا في توليد المجال المغناطيسي للأرض، وهذا المجال هو الذي يمنع كلًّا من الغلاف الغازي والمائي والحيوي للأرض من الانفلات.


نجد في الدورة الرابعة ثلاثة عناصر لها خصائص متشابهة، وهي الحديد والكوبالت والنيكل. تعرف هذه العناصر بثلاثية الحديد، ولها صفات مغناطيسية؛ إذ يصنع المغناطيس الصناعي من مزيج من النيكل والكوبالت والألومنيوم، ويستخدم النيكل في البطاريات مع الكادميوم.

أمّا الحديد فهو ضروري للهيمو جلوبين الذي ينقل الأكسجين في الدم.

وعند مزج الحديد مع الكربون ومع فلزات أخرى تنتج أنواع مختلفة من الفولاذ. فالجسور وناطحات السحاب_كما في الشكل ١٣_ تعتمد على الفولاذ.

ما الفلزات التي تكون ثلاثية الحديد؟



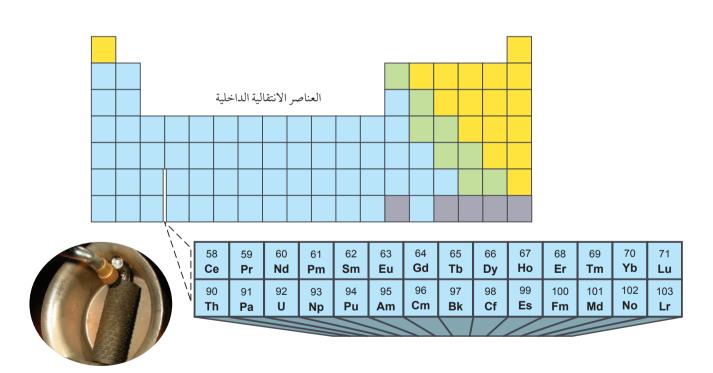
استخدامات العناصر الانتقالية درجات انصهار معظم العناصر الانتقالية أعلى من درجات انصهار العناصر الممثلة؛ فالفتيل المستخدم في المصباح الكهربائي مثلاً والموضّح في الشكل ١٤ مصنوع من عنصر التنجستون؛ لأن له أعلى درجة انصهار (٣٤١٠ ٣٥ س) مقارنة بالفلزات الأخرى، فيلا ينصهر عند مرور التيار الكهربائي فيه. أمّا الزئبق فله درجة انصهار (٣٩٠ س) أقل من أي فلز آخر، ويدخل في صناعة مقاييس الحرارة ومقاييس الضغط الجوي. وهو الفلز الوحيد الذي يوجد في الحالة السائلة عند درجة حرارة الغرفة، وهو سام كغيره من العناصر الثقيلة. لذلك يجب أخذ الحيطة والحذر عند التعامل معه. أمّا بالنسبة لعنصر الكروم فقد اشتق اسمه من الكلمة الإغريقية مسام والتي تعني اللون. ويوضّح الشكل ١٥ مادتين تحتويان على عنصر الكروم. ويتحد الكثير من العناصر الانتقالية بعضها مع بعض لتكوين موادّ ذات ألوان لامعة.

ونجد أيضًا أنّ عناصر الروثينيوم والروديوم والبلاديوم والأوزميوم والأريديوم والتي تسمّى أحيانًا مجموعة البلاتين، لها صفات متشابهة؛ فهي لا تتحد بسهولة مع العناصر الأخرى، وتستخدم في التفاعلات الكيميائية بوصفها عوامل مساعدة. والعامل المحفز Catalyst مادّة تعمل على زيادة سرعة التفاعل دون أن تتغيّر، ومن العناصر الانتقالية الأخرى التي تعمل بوصفها عوامل مساعدة النيكل والكوبالت والخارصين. وتستخدم العناصر الانتقالية بوصفها عوامل مساعدة في إنتاج المواد الإلكترونية والاستهلاكية والبلاستيك والأدوية.

الشكل ١٤ يستخدم العنصر الانتقالي التنجستون في مصابيح الإنارة بسبب ارتفاع درجة انصهاره.

الشكل ١٥ تستخدم العناصر الانتقالية في الكثير من المنتجات.

الأضواء الساطعة


يستخدم كل من أكسيد الليتريوم (Y_2O_3) وأكسيد اليوروبيوم (Eu_2O_3) في شاشات التلفاز لإعطاء اللون الأحمر الطبيعي، وذلك عندما تُقذف هذه الشاشات بشعاع من الإلكترونات، كما تستخدم مركبات أخرى لتكوين الألوان الإضافية اللازمة لإعطاء الصور مظهرها الطبيعي.

العناصر الانتقالية الداخلية

هناك سلسلتان من العناصر الانتقالية الداخلية، تمتد الأولى من السيريوم إلى اللوتيتيوم، وتُسمّى اللانثانيدات Lanthanides أو العناصر الترابية النادرة؛ وذلك لأنّ الاعتقاد السائد آنذاك أنّها قليلة الوجود، وتوجد عادةً متحدة مع الأكسجين في القشرة الأرضية. أمّا السلسلة الثانية فتمتد من الثوريوم إلى اللورينسيوم، وتُسمّى الأكتنيدات Actinides.

الانثانيدات؟ ما الاسم الآخر الذي تعرف به اللانثانيدات؟

الانثانيدات فلزات لينة يمكن قطعها بالسكين، ولكنها متشابهة، حيث يصعب فصلها عندما توجد في خام واحد، ولقد اعتقد قديمًا أنّها نادرة الوجود، إلا أن القشرة الأرضية في الواقع تحوي من السيريوم أكثر من الرصاص؛ فالسيريوم يكوّن ٥٠٪ من سبيكة الميسش، التي نجدها في حجر الولاعة كما في الشكل ١٦، والتي تحتوي بالإضافة إلى السيريوم على عناصر مثل لانثانيوم ونيوديميوم والحديد.

الشكل ١٦ يتكون الحجر المستخدم في الولاعة من ٥٠٪ من فلز السيريوم، و٢٥٪ من اللانشانوم، و١٠٪ من نيوديميوم، و١٠٪ من فلزات نادرة وحديد.

الأكتنيدات جميع الأكتنيدات عناصر مشعة؛ أنويتها غير مستقرة، وتتحول إلى عناصر أخرى.

اليورانيوم والثوريوم، والبروتاكتينيوم هي العناصر الطبيعية الوحيدة من الأكتنيدات التي توجد في القشرة الأرضية؛ ويمتاز اليورانيوم بطول فترة عمر النصف له؛ حيث تبلغ ٥, ٤ مليارات سنة. أمّا بقية عناصر الأكتنيدات فتكون عناصر مصنعة Synthetic elements في المختبرات والمفاعلات النووية، انظر الشكل ١٧. وهذه العناصر المصنعة لها استخدامات كثيرة؛ فيستخدم البلوتونيوم مثلًا وقودًا في المفاعلات النووية. أمّا الأميريسيوم فيستخدم في بعض أجهزة الكشف عن الدخان في المباني. وأمّا عنصر الكاليفورنيوم - ٢٥٢ فيستخدم في قتل الخلايا السرطانية.

🟏 ماذا قرأت؟ 🔻 ما الصفة التي تشترك فيها جميع الأكتنيدات؟

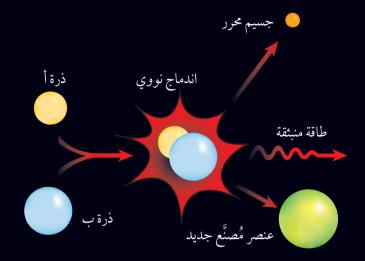
أكثر من ١٥٠ عامًا مزيجًا مكوّنًا من النحاس والفضة والقصدير والزئبق لحشو فجوات الأسنان، ممّا يعرض البعض لأبخرة الزئبق السامة. أمّا الآن فيستخدم الأطباء بدائل مكوّنة من الصمغ والبورسلان الذي يستخدم لمعالجة الأسنان، وهي مواد قوية ومقاومة كيميائيًّا لسوائل الجسم، ويتغير لونها ويصبح كلون الأسنان الطبيعي. وتحتوي بعض أنواع الصمغ المكونة لهذه المواد على الفلوريد الذي يحمي الأسنان من النخر. وتعدهذه الموادّ عديمة النفع إذا لم يستخدم الأطباء مثبتات قوية معها، حيث تستخدم المثبتات (مواد لاصقة) في إلصاق هذه المواد بالسن الطبيعي، وهذه المثبتات تكون أيضًا قوية ومقاومة كيميائيًّا لسوائل الجسم.

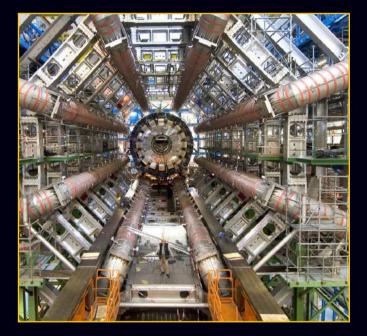
طب الأسنان ومواده استخدم أطباء الأسنان منذ

الأسنان؟ ماذا قرأت؟ لماذا يُستخدم الصمغ والبورسلان في علاج الأسنان؟

يستخدم الأطباء سبائك من النيكل والتيتانيوم لتقويم الأسنان المعوجة وتقويتها، إذ تُصنع هذه السبائك في صورة أسلاك تعالج بالحرارة لتأخذ شكل الأسنان. تُرى كيف تعمل هذه الأسلاك على تقويم الأسنان؟

الأخطار الصحية

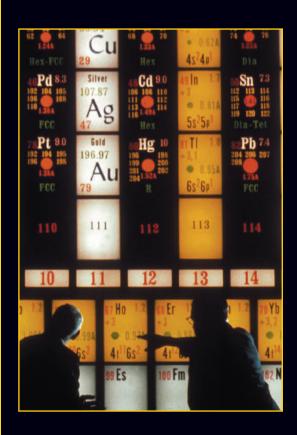

ارجع إلى المواقع الإلكترونية عبر شبكة الإنترنت أو أية مواقع أخرى للبحث عن الأضرار الصحية للزئبق.


نشاط اكتب فقرة حول تأثير الزئبق في صحتك.

العناصر المصنعة

الشكل ١٧

لا يوجد عنصر أثقل من اليورانيوم في القشرة الأرضية بشكل طبيعي؛ إذ يحتوي على ٩٢ بروتونًا و١٤٦ نيوترونًا. إلا أن العلماء تمكّنوا من تصنيع عناصر لها عدد ذري أكبر من اليورانيوم باستخدام مسرّعات الجسيهات؛ حيث تُقذف الأنوية بجسيهات سريعة، وتلتحم بالنواة لتكوين عنصر أثقل وهذه العناصر الثقيلة المصنعة هي نظائر مشعة، بعضها يبقى لفترات قصيرة جدًّا لا تتجاوز أجزاء من الثانية قبل أن تشع الجسيهات وتتحلَّل لتكوِّن عناصر خفيفة.



▲ نجد سيلاً من الذرات التي تتحرّك بسر عات مذهلة في الحجرة المفرغة من الهواء في مسرّع الجسيات، كالموجود في مدينة هيس في ألمانيا.

◄ أقر المجلس العام للأيوباك الاسم الرسمي للعنصر ١١٠ الذي كان يحمل اسم يونانيليوم (Uun)، ليصبح دارمستادتيوم (Ds)، ومن المتوقع أن تتم تسمية العنصر ١١١ في القريب العاجل.

▲ عندما تتحد الذرات تندمج أنويتها، فتشكّل عنصرًا جديدًا قد يكون عمره قصيرًا. وفي هذه العملية تنطلق بعض الطاقة وبعض الجسيات.

الدرس

مراجعة

اختبر نفسك

- 1. عين فيم تختلف العناصر المكوّنة لثلاثية الحديد عن باقي العناصر الانتقالية؟
- وضح الاختلافات الأساسية بين اللانثانيدات والأكتنيدات؟
 - ٣. وضح أهم استخدامات الزئبق؟
 - ٤. صف كيف تنتج العناصر المصنعة؟
- التفكيرالناقد الإيريديوم والكادميوم من العناصر الانتقالية، فهل تستطيع توقع أيّها سامٌ، وأيّها عامل مساعد؟ وضّح ذلك.

تطبيق المهارات

7. كون فرضية كيف يكون مظهر المصباح المحترق مقارنة بمظهر المصباح الجديد (السليم)؟ وما الذي يمكن أن يفسّر هذا الاختلاف؟

الخلاصة

العناصر الانتقالية

- جميع العناصر الانتقائية (عناصر المجموعات من ٣-١٢) فلزات.
- تتغير خصائص العناصر الانتقالية بدرجة أقل من خصائص العناصر المثلة.
- العناصر المكونة لثلاثية الحديد هي الحديد والنيكل والكوبالت.

العناصر الانتقالية الداخلية

- تشمل سلسلة اللانثانيدات العناصر من السيريوم وحتى اللوتيتيوم.
- تعرف اللانثانيدات أيضًا بالعناصر الترابية النادرة.
- تشمل سلسلة الأكتنيدات العناصر من الثوريوم وحتى اللورينسيوم.

العلـــوم ﴿ عَبِرِ الْمُواقِعُ الْإِلْكَتْرُونِيةَ

لمزيد من الاختبارات القصيرة ارجع إلى الموقع الإلكتروني: www.obeikaneducation.com

الغلزات واللافلزات

الأهداف

- تصف المظهر العام للفلز واللافلز.
- تقوّم قابلية الطرق واللمعان للفلز واللافلز.
- **تلاحظ** التفاعلات الكيميائية للفلز واللافلز مع الحمض والقاعدة.

المواد والأدوات

- ١٠ أنابيب اختبار مع حامل للأنابيب.
 - مخبار مدرّج سعته ۱۰ مل.
 - ملاقط صغيرة.
 - مطرقة صغيرة.
- محلول حمض الهيدروكلوريك HCl (تركيزه ٥, ٠ مول/ لتر).
- محلول كلوريدالنحاس Cu Cl₂ II (تركيزه ۱, ۰ مول/ لتر).
 - فرشاة تنظيف أنابيب.
 - قلم تخطيط.
- ۲۵ جم من (کربون، سلیکون، قصدیر، کبریت، حدید).

إجراءات السلامة

🔵 سؤالمنواقعالحياة

تهتم البرامج الفضائية بالفلزات التي توجد على الكويكبات، والتي يمكن تعدينها للحصول على حديد ونيكل نقيين. وقد ينتج عن عملية التعدين نواتج ثانوية قيّمة مثل عناصر الكوبالت، والبلاتينيوم، والذهب. فكيف يستطيع العاملون بالتعدين تحديد ما إذا كان العنصر فلزَّا أم لا فلزَّا؟

🔇 الخطوات

1. انسخ الجدول التالي في دفتر العلوم، ودوّن ملاحظاتك عندما تنتهي من تنفيذ تجاربك.

بيانات الفلزات واللافلزات											
التفاعل مع	التفاعل مع	القابلية									
CuCl ₂	HCl	للطرق	المظهر	العنصر							
				كربون							
				سليكون							
				كبريت							
				حدید							
				القصدير							

- ٢٠ صف بالتفصيل مظهر العينة (التي سيقدمها لك معلمك) من حيث اللون واللمعان والحالة.
 - ٣٠ استخدم المطرقة لتعرّف هشاشة العينة أو قابليتها للطرق.

استخدام الطرائق العلمية

- د وقم خمسة أنابيب اختبار ١-٥، ثم ضع في كل أنبوب ١جم من كل عينة في أنبوب منفصل، وأضف إلى كل أنبوب
 ٥ مل من محلول HCl. إذا تكوّنت فقاقيع فهذا دليل على حدوث تفاعل كيميائي.
- أعد الخطوة رقم ٤ باستخدام محلول CuCl₂ بدلًا من محلول HCl. استمرّ في المراقبة مدّة خمس دقائق؛ بعض التغيرات قد تظهر ببطء. لاحظ أن التغير في مظهر العنصر دليل على حدوث التفاعل.

🚺 تحليل البيانات

- 1. تحليل النتائج ما الخصائص التي تُميّز بين الفلزات واللافلزات؟
 - ٢. اكتب قائمة بالعناصر التي وجد أنها فلزات.
- ٣. صف أشباه الفلزات، هل هناك عناصر من التي فحصتها أشباه فلزات؟ سمِّها إن وجدت.

🔕 الاستنتاج والتطبيق

- ١. وضح كيف يمكن أن تتغير حاجتنا لبعض العناصر في المستقبل؟
- ٢. استنتج لماذا يعد اكتشاف الفلزات وتعدينها على الكويكبات من الاكتشافات المهمة؟

العلم والمجتمع

النهسي

معدن الذهب (Au) من أكثر العناصر الفلزية شيوعًا عند الناس منذ العصور القديمة؛ لما له من خصائص تميّزه عن باقي العناصر. فهو ليّن، أصفر اللون، لامع، وموصل جيد للحرارة والكهرباء، وينصهر عند درجة حرارة ٣٠٠١ "س ويغلي عند درجة ٩٠٠٨ "س. ويوجد في الطبيعة على هيئة حبيبات في الصخور، أو في قيعان الأنهار، أو على شكل عروق في باطن الأرض، ويسمى عندئذ "التبر"، ويكون مختلطًا مع عناصر أخرى وخصوصًا الفضة. والعديد من الناس يَخلطون بينه وبين معدن البيريت؛ لتشابه لونيهما، ولكن يمكن تمييز الذهب بسهولة بسبب وزنه النوعي المرتفع تمييز الذهب بسهولة بسبب وزنه النوعي المرتفع تمييز الذهب بسهولة بسبب وزنه النوعي المرتفع (١٩,٣).

ومما ينفرد به الذهب قِلَّة نشاطه الكيميائيّ؛ فلا يتأثر

بالهواء ولا بالماء ولا بالأحماض ولا بالمحاليل الملحية، وبالتالي لا يصدأ ولا يفقد بريقه؛ لذا استخدمته العديد من الحضارات والدول في صناعة العملات الفلزية. كما يدخل بشكل رئيس في صناعة الحلي والمجوهرات. ويستخدم أيضًا في مجالات أخرى مختلفة؛ ففي المجال الطبي يدخل في تراكيب الأسنان، وعلاج الروماتيزم، ويستعمل الذهب المشعّ في علاج بعض أنواع السرطان. وفي مجال الإلكترونيات يدخل في صناعة الهواتف المحمولة، والآلات الحاسبة، وأجهزة الحاسوب. وقد استُعمل الذهب بكثرة عند الفراعنة، ولا يزال القناع الذهبي للفرعون توت عنخ آمون محتفظًا ببريقه، على الرغم من مرور أكثر من ثلاثة آلاف عام على صناعته.

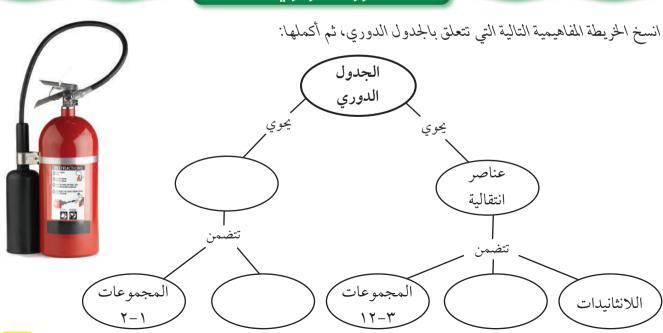
ابحث في النشاط الكيميائي لفلز الذهب، واربط ذلك بموقع الفلز في سلسلة النشاط الكيميائي واستعماله في مناح مختلفة. العلوم عبر المواقع الإلكترونية المسكة الإنترنت.

مراجعـة الأفكار الرئيسـة

الدرس الأول مقدمة في الجدول الدوري

- عند ترتيب العناصر في الجدول وفق أعدادها الذرية،
 انتظمت العناصر التي لها خصائص متشابهة في عمود واحد، وسميت مجموعة أو عائلة.
- ٢. تتغير خصائص العناصر تدريجيًّا كلما انتقلنا أفقيًّا في صفو ف (دورات) الجدول الدوري.
- ٣. تقسم عناصر الجدول الدوري إلى عناصر ممثلة وعناصر انتقالية.

الدرس الثاني الممثلة


- للمجموعات في الجدول الدوري أسماء تُعرف بها،
 كالهالوجينات في المجموعة السابعة عشرة.
- ذرات العناصر في المجموعة ١ والمجموعة ٢ تتحد مع ذرات العناصر الأخرى.
- ٣. عناصر المجموعة الثانية أقل نشاطًا من عناصر

- المجموعة الأولى. العناصر القلوية الأرضية ثقيلة، ولها درجة انصهار عالية مقارنة بالعناصر القلوية التي تقع ضمن نفس الدورة.
- لعناصر الصوديوم، والبوتاسيوم، والماغنسيوم، والكالسيوم دور حيوي مهم.

الدرس الثالث العناصر الانتقالية

- 1. توجد الفلزات المكونة لثلاثية الحديد في أماكن متنوعة؛ فالحديد مثلًا يوجد في الدم، وكذلك يستخدم في بناء ناطحات السحاب.
- النحاس والذهب والفضة عناصر غير نشطة ولينة وقابلة للسحب والطرق.
 - ٣. اللانثانيدات عناصر طبيعية لها خواص متشابهة.
- . الأكتنيدات عناصر مشعة، وجميعها ما عدا الثوريوم والبركتينيوم واليورانيوم عناصر مصنَّعة.

تصور الأفكار الرئيسة

مراجعة الفصل

استخدام المفردات

أجب عن الأسئلة التالية:

- 1. ما الفرق بين الدورة والمجموعة في الجدول الدوري للعناصر؟
- ٢. ما أوجه التشابه بين أشباه الفلزات وأشباه الموصلات؟
 - ٣. ما المقصود بالعامل المساعد؟
- ٤. رتب المواد التالية حسب توصيلها للحرارة والكهرباء
 (من الأعلى إلى الأقل): لا فلزات، فلزات، أشباه فلزات.
- ما أوجه التشابه والاختلاف بين الفلزات واللافلزات؟
 - ·. ما العناصر المصنعة؟
 - ٧. ما العناصر الانتقالية؟
 - ٨. لماذا تعد بعض الغازات نبيلة؟

تثبيت المفاهيم

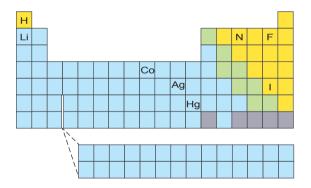
اختر رمز الإجابة الصحيحة فيما يلى:

- ٩. أي مجموعات العناصر التالية تتحد سريعًا مع العناصر الأخرى لتكوّن مركبات؟
- أ. العناصر الانتقالية ج. الفلزات القلوية الأرضية
 - ب. الفلزات القلوية د. ثلاثية الحديد
 - ١٠ أيّ العناصر التالية ليس من العناصر الانتقالية؟
 - أ. الذهب ج. الفضة
 - ب.النحاس د. الكالسيوم
 - ١١. أيّ العناصر التالية لا ينتمى إلى ثلاثية الحديد؟
 - أ. النيكل ج. النحاس
 - ب. الكوبالت د. الحديد
- ١٢. أيّ من العناصر التالية يقع في المجموعة ٦ والدورة ٤؟
 - أ. التنجستون ج. التيتانيوم
 - ب.الكروم د. الهافنيوم

- ١٣. أيّ العناصر التالية يمكن أن يكوّن مادّة صفراء لامعة الله ن؟
 - أ. الكروم
 - ب. الحديد
 - ج. الكربون
 - د. القصدير
 - ١٤. المجموعة التي جميع عناصرها لافلزات هي:
 - أ. ١
 - ب.۲
 - ج. ۱۲
 - د. ۱۸
 - ١٥. أيّ ممّا يلي يصف عنصر التيلوريوم؟
 - أ. فلز قلوى
 - ب. فلز انتقالي
 - ج. شبه فلز
 - د. لانثانیدات
 - ١٦. أيّ الهالوجينات التالية يعد عنصرٌ مشعٌ؟
 - أ. الأستاتين
 - ب. البروم
 - ج. الكلور
 - د. اليود

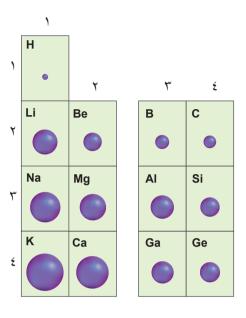
التفكيرالناقد

- ١٧ . فسر لماذا يُحفظ الزئبق بعيدًا عن السيول ومجاري المياه؟
- 1۸. حدّد إذا أردت أن تجعل عنصر الأرجون النبيل يتحد مع عنصر آخر فهل يكون الفلور هو الاختيار الأنسب؟ فسّر ذلك.


أنشطة تقويم الأداء

37. طرح الأسئلة ابحث عن إسهامات هنري موزلي في تطوير الجدول الدوري الحديث، وابحث عن عمله وخلفيته العلمية. اكتب نتيجة بحثك في صورة مقابلة صحفة.

تطبيق الرياضيات


- العناصر عند درجة حرارة الغرفة مثّل برسم بياني بالأعمدة العناصر الممثلة في الحالات الصلبة والسائلة والغازية عند درجة حرارة الغرفة.
- 1. ٢٦ حسب مستعينًا بالمعلومات التي حصلت عليها في السؤال السابق. احسب النسب المئوية للعناصر الممثلة الصلة و السائلة و الغازية.

ارجع إلى الشكل التالى للإجابة عن السؤال رقم ٢٧.

۲۷. تفاصيل العناصر حدد رقم دورة ومجموعة العناصر الظاهرة في الجدول الدوري أعلاه، وحالة كلّ عنصر عند درجة حرارة الغرفة، وأيّها فلز، وأيّها لافلز؟

استعن بالرسم التالي للإجابة عن السؤال رقم ١٩:

- 19. فسر البيانات يُظهر الجدول الدوري أنماطًا عند الانتقال من عنصر إلى آخر في الصفوف والأعمدة، ويُمثّل الحجم الذري في هذا الجزء من الجدول الدوري في صورة كرات. ما الأنماط التي يمكن أن تلاحظها في هذا الجزء من الجدول الذري؟
- ٢. قوم تنصّ نظرية ما على أن بعض الأكتنيدات التي تلت اليورانيوم كانت يومًا ما في القشرة الأرضية. إذا كانت هـذه النظرية صحيحة فكيف يمكن مقارنة عمر النصف للأكتنيدات بعمر النصف لليورانيوم الـذي هو ٥, ٤ مليارات سنة؟
- ٢١. حدد السبب والنتيجة لماذا يعمل المصورون في غرفة خافتة الإضاءة عند تعاملهم مع مواد تحوي السيلينيوم؟
 ٢٢. توقع كيف يمكن أن تكون الحياة على الأرض إذا كانت نسبة الأكسجين في الهواء ٨٠٪ والنيتروجين ٢٠٪، على عكس ما هو موجود فعلًا؟
- 77. قارن بين عنصري Na و Mg اللذين يقعان في الدورة نفسها، وبين العنصرين F و Cl اللذين يقعان في المجموعة نفسها.

استعن بالجدول التالى للإجابة عن السؤالين ٤ و ٥.

نظائر النيتروجين									
عدد البروتونات	العدد الكتلي	النظير							
٧	١٢	نیتروجی <i>ن-۱۲</i>							
٧	١٣	نيتروجين-١٣							
٧	١٤	نيتروجين-١٤							
٧	١٥	نيتروجي <i>ن-١٥</i>							

٤. يظهر الجدول السابق خصائص بعض نظائر النيتر وجين. ما عدد النيوترونات في نظير النيتروجين-١٥؟

ج. ۸

أ. ٧

د. ۱٥

ب. ۱٤

٥. أيّ نظير من النظائر السابقة أقلّ استقرارًا؟

أ. النيتروجين-١٥ ج. النيتروجين-١٤

ب. النيتروجين-١٣ د. النيتروجين-١٢

٦. أي ممّا يلي أصغر كتلة؟

أ. الإلكترون ج. النواة

د. النيوترون

ب. البروتون

٧. أيّ العناصر التالية الأثقل وهو في الحالة الطبيعية؟

ج. Am

د. U

ب. Po

 العدد الـذري لعنصر الروثينيوم هو ٤٤، والعدد الكتلى له ١٠١. ما عدد بروتونات هذا العنصر؟

ج. ٥٧

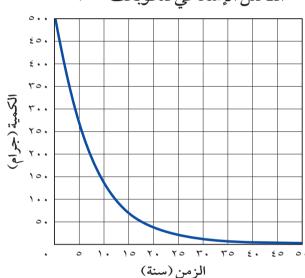
1. 33

ب. ۸۸

الجزء الأول: أسئلة الاختيار من متعدد

اختر رمز الإجابة الصحيحة فيما يلى:

١. أيّ ممّا يلي لا يعد عنصرًا:


أ. الحديد ج. الكربون

د. الأكسجين

ب. الفولاذ

استخدم الرسم البياني التالي للإجابة عن السؤالين ٢، ٣:

التحلل الإشعاعي للكوبالت - ٦٠

٢. يظهر الرسم البياني السابق التحلّل الإشعاعي لكمية مقدارها ٥٠٠ جم من الكوبالت-٦٠، ما عمر النصف له؟

أ. ۲۷, ٥ سنوات ج. ۱۰,٥٤ سنوات

ب. ۲۱,۰۸ سنة د. ۲۱,۰۸ سنة

٣. كم يتبقى من الكوبالت-٦٠ بعد ٢٠ عامًا؟

أ. ۳۰ جم ج. ۲۰ جم

ب. ۹۰ جم د. ۱۲۰ جم

٩. أيّ ممّا يلي لا يمكن معرفة عمره باستخدام التأريخ | ١٣. ما الاسم الذي يطلق على العناصر الثلاثة هذه التي تستخدم في عمليات صنع الفولاذ ومخاليط فلزات

ج. الفلزات التي تصنع أ. اللانثانيدات منها العملات

> الأكتنيدات د. ثلاثية الحديد

١٤. إلى أيّ مجموعة تنتمي العناصر البارزة في الجدول؟

أ. اللافلزات ج. العناصر الانتقالية

ب. الغازات النبيلة د. الفلزات

١٥. أيّ عناصر المجموعة ١٣ يدخل في صناعة علب المشروبات الغازية ونوافذ المنازل؟

> أ. الألومنيوم س. البورون د. الجاليوم ب. الإنديوم

استخدم الجدول التالى للإجابة عن السؤالين ١٦ و ١٧.

Н										
Li	Ве								F	Ne
Na	Mg								CI	Ar
K	Ca								Br	Kr
Rb	Sr								1	Xe
Cs	Ва								At	Rn
Fr	Ra									
		11								
		,								
		,	\							

١٦. الهالوجينات عناصر لا فلزية نشطة. أي عناصر المجموعات الآتية يتحد معها بصورة سريعة؟

أ. المجموعة ١ - الفلزات القلوية.

ب. المجموعة ٢- الفلزات القلوية الأرضية.

ج. المجموعة ١٧ - الهالوجينات.

د. المجموعة ١٨ - الغازات النبيلة.

الكربوني-١٤؟

أ. وعاء خشبي ج. بقايا النبات

ب. شظايا العظم د. الأدوات الصخرية

١٠. ممّ تتكون جميع الموادّ؟

أ. الرمل ج. أشعة الشمس

د. سبائك معدنية ب. ذرات

١١. أيّ العبارات التالية المتعلقة بالجدول الدوري صحيح؟

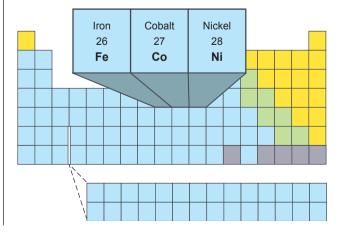
أ. توجد العناصر جميعها بشكل طبيعي على الأرض.

ب. تم ترتيب العناصر حسب زمن اكتشافها.

ج. العناصر التي لها خصائص متشابهة تقع في المجموعة نفسها.

د. رتبت العناصر حسب رأى مندليف.

١٢. أيّ ممّا يلي لا يعدّ من خصائص الفلزات؟


أ. قابلة للسحب والتشكيل.

ب. لها لمعان.

ج. قابلة للطرق.

د. رديئة التوصيل للحرارة والكهرباء.

استخدم الرسم التالي للإجابة عن السؤالين ١٣ و ١٤.

الوحدة اختبار مقنن

١٧ . أيّ من الفلزات القلوية التالية أكثر نشاطًا؟

اً. Na .ج. Li

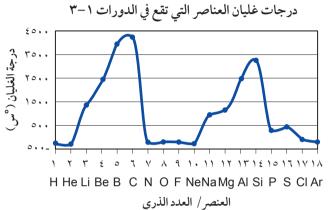
ر. Cs د. K.

11. تُصنف الكثير من العناصر الأساسية للحياة - ومنها النيتروجين والأكسجين والكربون - ضمن مجموعة:

أ. اللافلزات ج. الفلزات

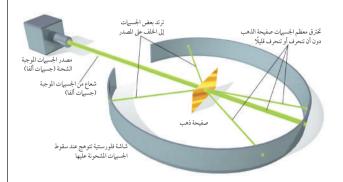
ب. أشباه الفلزات د. الغازات النبيلة

الجزء الثاني: أسئلة الإجابات القصيرة


- ١٩. ما العنصر؟
- ٠٢. ما الاسم الحديث لأشعة الكاثود؟

- ٢١. يوضّح الشكل أعلاه التحلل الاشعاعي (تحلل بيتا)
 للهيدروجين-٣ إلى هيليوم-٣ وإلكترون، فما جسيم
 بيتا؟ ومن أيّ جزء من الذرة يأتي جسيم بيتا؟
- ٢٢. صف التحوّل الذي يحدث خلال تحلّل جسيمات بيتا،
 كما هو موضّح في الشكل أعلاه.
 - ٢٣. وضح أفكار طومسون حول مكوّنات الذرة.
- ٢٤. هـل تكـون الإلكترونات بالقرب مـن النـواة، أم بعيدًاعنها؟ ولماذا؟
- ٢٥. عمر النصف لعنصر السيزيوم ١٣٧ هو ٣٠, ٣٠ سنة،
 فإذا بدأت بعينة كتلتها ٢٠ جم فكم يتبقى من العينة بعد
 ٩, ٠٩ سنة؟
- ٢٦. قارن بين خصائص عنصري الذهب والفضة اعتمادًا على معلومات الجدول الدوري.

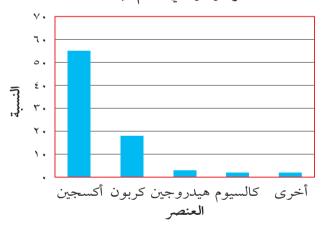
۲۷. لماذا لا يتطابق رمز العنصر أحيانًا مع اسمه؟ أعط مثالين على ذلك، وصف أصل كلّ رمز منهما.


استخدم الرسم البياني التالي للإجابة عن السؤالين ٢٨ و ٢٩.

- ۲۸. تظهر البيانات أنّ درجة الغليان خاصية دورية. وضّح المقصو د بالخاصية الدورية.
 - ٢٩. صف النمط الموجود في البيانات أعلاه.
- .٣٠. صف الخليط الذي كان يستخدمه أطباء الأسنان قبل ١٥٠ سنة مضت لحشو الأسنان، ولماذا يستخدمون الآن موادّ أخرى لحشو الأسنان؟
- ٣١. قارن بين الجدول الدوري الذي وضعه مندليف والجدول الدوري الذي وضعه موزلي.
- ٣٢. اختر مجموعة من العناصر الممثلة، واكتب قائمة بأسماء عناصرها، ثم اكتب ٣ ٤ استخدامات لهذه العناصر.

الجزء الثالث: أسئلة الإجابات المفتوحة

استخدم الرسم التالي للإجابة عن السؤالين ٣٤،٣٣.



- ٣٣. يوضّح الرسم أعلاه تجربة راذرفورد. صف التجهيزات والإعدادات التي قام بها في التجربة، وما النتائج التي توقعها راذرفورد من تجربته؟
- ٣٤. ما دلالة ارتداد بعض الجسيمات من صفيحة الذهب؟ وكيف فسر راذرفورد هذه النتائج؟
- . حمف أفكار دالتون حول مكوّنات المادة، والعلاقة بين الذرات والعناصر.
 - ٣٦. صف كيف اكتشفت أشعة الكاثو د (المهبط).
- ٣٧. صف كيف تمكن طومسون من توضيح أنّ أشعة الكاثود عبارة عن سيل من الجسيمات، وليست ضوءًا.
- ٣٨. تحتوي بعض أجهزة كشف الدخان على مصادر مشعة. وضح كيف يستفاد من ظاهرة التحلّل الإشعاعي في الكشف عن الدخان؟
- ٣٩. عمر النصف للمنجنيز ٥٤ يساوي ٣١٢ يومًا تقريبًا.
 وضّح من خلال الرسم البياني التحلّل الإشعاعي لعيّنة
 من هذه المادة كتلتها ٢٠٠ جم.
- ٤٠ صف استخدامات العناصر المشعة في الطب والزراعة والصناعة.

- 13. ما الدور المهم الذي يلعبه عنصر النيتروجين في جسم الإنسان؟ وضّح أهمية البكتيريا للتربة التي تعمل على تحويل النيتروجين من حالته الطبيعية التي يوجد فيها.
- ٤٢. يصنع العديد من الأسلاك المستخدمة في المنازل من النحاس. ما خصائص النحاس التي تجعله ملائمًا لهذا الغرض؟
- ٤٣. لماذا يقوم بعض أصحاب المنازل بالتحقّق من وجود (أو عدم وجود) غاز الرادون النبيل في منازلهم؟

استخدم الرسم البياني التالي للإجابة عن السؤالين ٤٤ و ٥٥.

العناصر الموجودة في جسم الإنسان

- 33. يوضّح الرسم البياني أعلاه وجود بعض العناصر في جسم الإنسان بكميات كبيرة. معتمدًا على المعلومات المعطاة في الجدول الدوري، صمّم جدولًا يوضّح خصائص كلّ عنصر، على أن يتضمن رمزه وعدده الذري والمجموعة التي ينتمي إليها، وحدّد ما إذا كان فلزًا أم لا فلز أم من أشباه الفلزات.
- ٤ . أحد العناصر التي في الرسم أعلاه من الفلزات القلوية الأرضية. قارن بين خصائص عناصر هذه المجموعة وبين خصائص عناصر مجموعة القلويات.

وضع طبّاخ صيني في القرن العاشر الميلادي فحمًا نباتيًا مع مادتين من الكواد التي كانت تستعمل في المطابخ الصينية، فحدث انفجار مذهل. وسبواء كانت هذه القصة صحيحة أم لا فإن معظم الخبراء يتفقون على أن الألعاب النارية نشأت في الصين. فقد اكتشف الصينيون أنه إذا وضعت تلك المواد في أنبوب من الخيزران فإن قوة التفاعل تدفع الأنبوب عاليًا في السماء، ثم ينتج ضوء مثير وأصوات مناسبة للاحتفالات. وساهم التجارفي نقل فن صناعة الألعاب النارية إلى أوربا، فأضاف الأوربيون الواد الكيميائية الألعاب النارية عن طريق خلطه المواد الكيميائية المختلفة بالمسحوق المتفجر. والأن يستخدم الناس بمناسباتهم الخاصة.

مشاريع 🤺 الــودـــدة

ارجع إلى الموقع الإلكتروني <u>www.obeikaneducation.com</u> أو أي مواقع أخرى للبحث عن فكرة أو موضوع مشروع يمكن أن تنفذه أنت.

من المشاريع المقترحة:

- المهن اكتب بحثًا حول مهنة المهندس الكيميائي، والمهام التي يقوم بها، وأهمية مهنته في الحياة العملية.
- التقنية استقص المواد الكيميائية التي تدخل في وجبه إفطارك، وصمّم رسمًا بيانيًّا دائريًّا توضّح فيه نسبة كل مادة كيميائية في الطعام الذي تتناوله.
- النماذج اعرض على الطلاب تفاعلاً كيميائيًّا بسيطًا وشائعًا، ثم اجمع ما كتبه الطلاب من تفاعلات كيميائية بسيطة ليتشاركوا فيها.

ببحث عبر الشبكة الإلكترونية تدخل في صناعة الألعاب النارية، وكيف نشأت هذه الألعاب؟

الفصل

البناء الذري

والروابط الكيميائية

الفكرة العامة

تتوقف كيفية ارتباط الذرات بعضها ببعض على تركيبها الذري.

الدرس الأول

اتحاد الذرات

الفكرة الرئيسة تصبح الندرات أكثر استقرارًا عند اتحادها.

الدرس الثاني

ارتباط العناصر

الفكرة الرئيسة ترتبط ذرات العناصر بعضها مع بعض بانتقال الإلكترونات بينها أو بالمشاركة فيها.

عائلة العناصر النبيلة

تنتمي الغازات التي تستخدم في مناطيد المراقبة ومصابيح الإنارة المختلفة ولوحات الإعلانات إلى عائلة واحدة. ستتعرّف في هذا الفصل الصفات التي تميّز عائلات العناصر، كما ستتعلم كيف تكوِّن الذرات الروابط الكيميائية فيما بينها؛ بفقد إلكترونات، أو اكتسابها، أو التشارك فيها.

دفيّر العلوم اكتب جملة تقارن فيها بين الصمغ الذي يستخدم لتثبيت الأشياء في المنازل والروابط الكيميائية.

نشاطات تمهيدية

بناء نموذج لطاقة الإلكترونات

إذا نظرت حولك في المنزل وفي غرفتك، ستجد أشياء عدة، بعضها مصنوع من القماش، وبعضها الآخر من الخشب، وكثير منها مصنوع من البلاستيك. إنّ عدد العناصر التي توجد في الطبيعة لا يتجاوز المئة، وتتحد معًا لتكوين الموادّ المختلفة التي تشاهدها، فما الذي يجعل هذه العناصر تكوّن روابط كيميائية فيما بينها؟

- ١. التقط مشبك ورق بواسطة مغناطيس، ثم التقط مشبكًا آخر بالمشبك الأول.
- استمر في التقاط مشابك الورق بالطريقة نفسها حتى لا ينجذب أيّ مشبك جديد.
- ٤. التفكير الناقد: اكتب في دفتر العلوم أيّ المشابك كان فصله أسهل، وأيّها كان أصعب، وهل كان المشبك الأسهل فصله هو الأقرب

- - ٣. افصل المشابك واحدًا تلو الآخر بلطف.
- أم الأبعد عن المغناطيس؟

www.obeikaneducation.com

المطويات

منظمات الأفكار

الروابط الكيميائية اعمل المطوية التالية لتساعدك على تصنيف المعلومات من خلال رسم مخططات توضيحية للأفكار المتعلقة بالروابط الكيميائية.

الخطوة ١ اطو الورقة الرأسية من منتصفها كما في الشكل.

الخطوة ٢ اطو المطوية من منتصفها مرة أخرى من جانب إلى جانب آخر، على أن تبقى الحافة المغلقة من أعلى.

الخطوة ٣ أعد فتح طية الورقة الأخيرة وقُصّ الطبقة العلوية منها ليصبح لديك شريطان.

الخطوة ٤ أدر الورقة رأسيًّا، ثمّ عنون الشريطين كما هو مبين في الشكل.

تلخيص: في أثناء قراءتك للفصل حدّد الأفكار الرئيسة المتعلقة بمفهوم الروابط الكيميائية، واكتبها تحت العنوان المناسب لها. وبعد قراءتك للفصل وضّح الفرق بين الروابط التساهميّة القطبية والتساهمية غير القطبية، واكتب ذلك في الجزء الداخلي من مطويتك.

أتهيأ للقراءة

طرح الأسئلة

- أَتُعَلَّم يساعدك طرح الأسئلة على فهم ما تقرأ. ولا بدأن تفكّر في أثناء قراءتك في الأسئلة التي تود الحصول على إجابات لها، قد تجد أحيانًا إجابات بعضها في فقرة مختلفة عن التي تقرؤها، أو في فصل آخر. وعليك أن تتعلم طرح أسئلة مناسبة مثل: مَن ..؟ وماذا..؟ ومتى ..؟ وأين ..؟ ولماذا..؟ وكيف ...؟
 - و أندرّب اقرأ هذه الفقرة التي أخذت من الدرس الثاني في هذا الفصل.

بدأ الكيميائيون في العصور الوسطى محاولات جادة لاكتشاف علم الكيمياء. وعلى الرغم من إيمان الكثيرين منهم بالسحر وتحويل المواد (مثل تحويل الرصاص إلى الذهب)، إلا أنّهم تعلموا الكثير عن خصائص العناصر، واستخدموا الرموز للتعبير عنها في التفاعلات. صفحة ١٦٥.

وهذه بعض الأسئلة التي قد تطرحها حول الفقرة أعلاه:

- من الكيميائيون القُدامي؟
- ما إسهاماتهم في الكيمياء؟
- ما الرموز التي استخدموها في تمثيل العناصر؟
- هل تختلف تلك الرموز عن الرموز الكيميائية الحديثة؟

اطبق ابحث في أثناء قراءتك هذا الفصل عن إجابات للعناوين التي جاءت في صورة أسئلة.

اختبر نفسك، اطرح أسئلة، ثم اقرأ لتجد إجابات عن أسئلتك.

توجيه القراءة وتركيزها

ركز على الأفكار الرئيسة عند قراءتك الفصل باتباعك ما يلي:

- **قبل قراءة الفصل** أجب عن العبارات الواردة في ورقة العمل أدناه.
 - اكتب (م) إذا كنت موافقًا على العبارة.
 - اكتب (غ) إذا كنت غير موافق على العبارة.
- **(۱) بعد قراءة الفصل** ارجع إلى هذه الصفحة لترى إن كنت قد غيّرت رأيك حول أي من هذه العبارات.
 - إذا غيرت إحدى الإجابات فبيّن السبب.
 - صحّح العبارات غير الصحيحة.
 - استرشد بالعبارات الصحيحة في أثناء دراستك.

بعد القراءة م أوغ	العبارة		قبل القراءة م أوغ
	جميع الموادّ حتى الصلبة منها_مثل الخشب والحديد_فيها فراغات.	٠١.	
	يستطيع العلماء تحديد موقع الإلكترون في الذرة بصورة دقيقة.	٠٢.	
	تدور الإلكترونات حول النواة، كما تدور الكواكب حول الشمس.	٠٣.	
	عدد الإلكترونات في الذرة المتعادلة هو العدد الذري للذرة نفسها.	٤.	
	تتفاعل الغازات النبيلة بسهولة مع العناصر الأخرى.	.0	
	العناصر جميعها تفقد أو تكتسب أعدادًا متساويةً من الإلكترونات عندما ترتبط مع عناصر أخرى.	۲.	
	تتحرّك إلكترونات الفلزات بحريّة خلال أيونات الفلز.	٠.٧	
	تتحد بعض ذرات العناصر من خلال التشارك بالإلكترونات.	٠.٨	
	يحتوي جزيء الماء على طرفين متعاكسين تمامًا، كما في قطبي المغناطيس.	٠٩	

اتحاد الذرات

في هذا الدرس

الأهداف

- تحدّد كيف تترتب الإلكترونات داخل الذرة.
- تقارن بين أعداد الإلكترونات التي تستوعبها مستويات الطاقة في الذرة.
- تربط بين ترتيب الإلكترونات في ذرة العنصر وموقعها في الجدول الدوري.

الأهمية

تحدث التفاعلات الكيميائية في كل مكان من حولنا.

🥯 مراجعة المغردات

الذرة هي أصغر جزء من العنصر يحتفظ بخصائصه.

الهفردات الجديدة

- مستوى الطاقة
- التمثيل النقطى للإلكترونات
 - الرابطة الكيميائية

الشكل ۱ يمكنك مقارنة الكواكب بالإلكترونات.

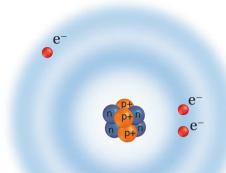
تتحرك الكواكب في مدارات

محددة حول الشمس.

البناء الذرى

إذا نظرت إلى مقعدك الذي تجلس عليه فسوف تجده صلبًا. وقد تندهش عندما تعلم أنّ الموادّ جميعها وحتى الصلبة منها - كالخشب والحديد - تحتوي غالبًا على فراغات. فكيف يكون ذلك؟ على الرغم من وجود فراغات صغيرة أو معدومة بين الذرات، إلاّ أن هناك فراغات كبيرة داخل الذرة نفسها.

يوجد في مركز كل ذرة نواة تحتوي على البروتونات والنيوترونات. وتُمثّل هذه النواة معظم كتلة الذرة. أمّا بقية الذرة فهو فراغ يحوي إلكترونات ذات كتلة صغيرة جدًّا مقارنة بالنواة. وعلى الرغم من أنّه لا يمكن تحديد موقع الإلكترون بدقة إلاّ أنّ الإلكترونات تتحرّك في الفراغ المحيط بالنواة والذي يُسمّى السحابة الإلكترونية.


ولكي تتخيل حجم الذرة، فلو تصورت النواة في حجم قطعة النقد الصغيرة فسوف تكون الإلكترونات أصغر من حبيبات الغبار، وتمتد السحابة الإلكترونية حول قطعة النقد بمساحة تعادل ٢٠ ملعبًا من ملاعب كرة القدم.

الإلكترونات قد تعتقد أنّ الإلكترونات تشبه إلى حدّ كبير الكواكب التي تدور حول الشمس، ولكنّها في الواقع مختلفة كثيرًا عنها؛ فكما هو مبين في الشكل ١، ليس للكواكب شحنة كهربائية، بينما نجد أنّ نواة الذرة موجبة الشحنة، والإلكترونات سالبة الشحنة. كما أنّ الكواكب تتحرّك في مدارات يمكن توقعها، ومعرفة مكان وجود الكواكب بدقة في أيّ وقت، بينما لا يمكننا معرفة ذلك بالنسبة للإلكترونات. ورغم أنّ الإلكترونات تتحرك في مساحة من الفراغ حول النواة يمكن توقعها إلاّ أنه لا يمكن تحديد موقع الإلكترون بدقة في هذه المساحة. لذا استخدم العلماء بدلاً من ذلك نموذجًا رياضيًّا يحسب ويتوقع المكان الذي يمكن أن يكون فيه الإلكترون.

تتحرك الإلكترونات حول النواة، ولكن لا يمكن تحديد مساراتها بدقة.

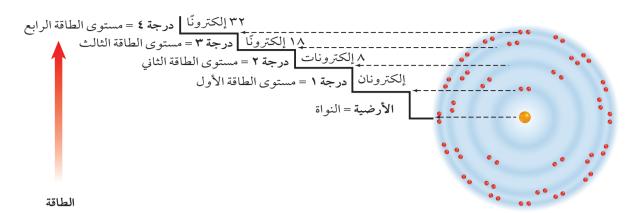
تركيب العنصر لكلّ عنصر تركيب ذري مميز له يتكوّن من عدد محدّد من البروتونات والنيوترونات والإلكترونات. ويكون عدد الإلكترونات مساويًا دائمًا لعدد البروتونات في ذرة العنصر المتعادلة. ويبين الشكل ٢ نموذجًا ثنائي الأبعاد للتركيب الإلكتروني لذرة عنصر الليثيوم التي تتكوّن من ثلاثة بروتونات وأربعة نيوترونات داخل النواة، وثلاثة إلكترونات تدور حول النواة.

ترتيب الإلكترونات

إنّ عدد الإلكترونات وترتيبها في سحابة الذرة الإلكترونية مسؤولان عن الخصائص الفيزيائية والكيميائية للعنصر.

طاقة الإلكترون رغم أنّ إلكترونات الذرة يمكن أن توجد في أي مكان داخل السحابة الإلكترونية، إلا أنّ بعضها أقرب إلى النواة من غيرها، وتُسمّى المناطق المختلفة التي توجد فيها الإلكترونات مستويات الطاقة Energy levels. ويبين الشكل ٣ نموذجًا لهذه المستويات، ويُمثّل كل مستوى كميّةً مختلفةً من الطاقة.

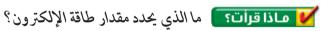
عدد الإلكترونات يتسع كل مستوى من مستويات الطاقة لعدد محدّد من الإلكترونات. وكلّما كان المستوى أبعد عن النواة اتسع لعدد أكبر من الإلكترونات، فمستوى الطاقة الأول يتسع لإلكترون واحد أو اثنين فقط، أمّا مستوى الطاقة الثاني فيتسع لـ ٨ إلكترونات فقط، ومستوى الطاقة الثالث يتسع لـ ١٨ إلكترونًا فقط، أمّا مستوى الطاقة الرابع فيمكن أن يتسع لـ ٣٢ إلكترونًا فقط.


الشكل ٢ تتكوّن ذرة الليثيوم المتعادلة من ثلاثة بروتونات موجبة الشحنة وأربعة نيوترونات متعادلة الشحنة وثلاثة إلكترونات سالية الشحنة.

النشاط الكيميائي ارجع إلى كراسة التجارب العملية

nume ultra little littl

الشكل ٣ تتحرّك الإلكترونات حول نواة الذرة في جميع الاتجاهات. وتمثّل الخطوط الداكنة في الشكل مستويات الطاقة التي قد توجد الإلكترونات فيها.


حدّ مستوى الطاقة الذي يمكن أن يتسع لأكبر عدد من الإلكترونات.

الشكل ٤ كلّما ابتعد مستوى الطاقة عن النواة ازداد عدد الإلكترونات التي يمكن أن يتسع لها. حدّد المستوى الأقل طاقة والمستوى الأكبر طاقة.

طاقة المستويات تبين درجات السلم في الشكل ٤ نموذجًا للحدّ الأقصى من الإلكترونات التي يمكن أن يستوعبها كلّ مستوى من مستويات الطاقة في السحابة الإلكترونية. تخيل أنّ النواة تمثل الأرضية والإلكترونات في الذرة لها كميات مختلفة من الطاقة يمكن تمثيلها بمستويات الطاقة، وتُمثّل مستويات الطاقة هذه بدرجات السلّم، كما في الشكل ٤. للإلكترونات في مستويات الطاقة الأقرب بلرجات السلّم، كما في الشكل ٤. للإلكترونات في مستويات الأبعد عن النواة، مما يسهل إلى النواة طاقة أقل من الإلكترونات في المستويات الأبعد عن النواة، مما يسهل فصلها. ولتحديد الحدّ الأقصى من عدد الإلكترونات التي يمكن أن يستوعبها مستوى الطاقة نستخدم العلاقة التالية: عدد الإلكترونات = ٢ن٢، حيث تمثّل ان" رقم مستوى الطاقة.

ارجع إلى التجربة الاستهلالية في بداية الفصل، حيث تطلّب الأمر طاقة أكبر لإزالة مشبك الورق الأقرب إلى المغناطيس، من الطاقة اللازمة لإزالة المشبك البعيد عنه؛ وذلك لأنّ قوة جذب المغناطيس للمشبك القريب إليه كانت أكبر. وكذلك بالنسبة للذرة؛ فكلّما كان الإلكترون (السالب الشحنة) أقرب إلى النواة الموجبة الشحنة كانت قوة الجذب بينهما أكبر. ولذلك فإنّ فصل الإلكترونات القريبة إلى النواة أكثر صعوبة من تلك البعيدة عنها.

الجدول الدورى ومستويات الطاقة

يتضمن الجدول الدوري معلومات حول العناصر، كما يمكن استخدامه أيضًا في فهم مستويات الطاقة. انظر إلى الصفوف الأفقية (الدورات) في الجدول الدوري الجزئي الموضّح في الشكل ٥ في الصفحة المقابلة، وتذكر أنّ العدد الذري لأيّ عنصر يساوي عدد البروتونات في نواة ذلك العنصر، ويساوي أيضًا عدد الإلكترونات حول النواة في الذرة المتعادلة. ولهذا يمكنك تحديد عدد الإلكترونات لكلّ عنصر بالنظر إلى عدده الذري المكتوب فوق رمز العنصر.

الإلكترونات

ارجع إلى المواقع الإلكترونية عبر شبكة الإنترنت

للبحث عن معلومات حول الإلكترونات وتاريخ اكتشافها.

نشاط ابحث عن سبب عدم قدرة العلماء على تحديد موقع الإلكترونات بدقة.

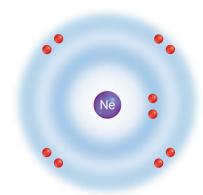
التوزيع الإلكتروني

إذا أمعنت النظر في الجدول الدوري الموضح في الشكل ٥ فستجد أنّ العناصر مرتبة وفق نظام محدّد؛ حيث يزداد عدد الإلكترونات في الذرة المتعادلة إلكترونًا واحدًا كلّما انتقلنا من اليسار إلى اليمين خلال الدورة الواحدة. وإذا تأملت الدورة الأولى مثلاً تجد أنها تحوي عنصر الهيدروجين الذي يحتوي على إلكترون واحد، وعنصر الهيليوم الذي تحتوى ذرته على إلكترونين في مستوى الطاقة الأول. انظر الشكل ٤. ولما كان مستوى الطاقة الأول يستوعب إلكترونين بحدّ أقصى، فإن المستوى الخارجي للهيليوم مكتمل، والذرة التي يكون مستواها الخارجي مكتملًا تكون مستقرة، ولذلك فالهيليوم يعد عنصرًا مستقرًّا.

🏏 ماذا قرأت؟ ماذا تسمَّى صفوف العناصر في الجدول الدورى؟

تبدأ الدورة الثانية بعنصر الليثيوم الذي يحتوى على ثلاثة إلكترونات، إلكترونان منها في مستوى الطاقة الأول، وإلكترون في مستوى الطاقة الثاني. لـذا فالليثيوم يحوي إلكترونًا واحدًا في مستوى الطاقة الخارجي (الثاني). وعن يمين الليثيوم يقع عنصر البريليوم الذي يحتوى على إلكترونين في مستوى الطاقة الخارجي، بينما يحتوى البورون على ثلاثة إلكترونات في مستوى الطاقة الخارجي. وهكذا حتى تصل إلى عنصر النيون الذي يحتوى على ثمانية إلكترونات في مستوى الطاقة

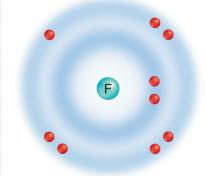
عند النظر إلى الشكل ٤ مرة أخرى ستلاحظ أنّ مستوى الطاقة الثاني يستوعب ثمانية إلكترونات، فالنيون له مستوى طاقة خارجي مكتمل، وهذا التوزيع الإلكتروني الذي يضم ثمانية إلكترونات في المستوى الخارجي للذرة يجعل الذرة مستقرة؛ لذا فإن ذرة النيون مستقرة. وكذلك الأمر بالنسبة إلى عناصر الدورة الثالثة؛ حيث تملأ العناصر مستوياتها الخارجية بالإلكترونات بالطريقة نفسها، وتنتهي هذه الدورة بعنصر الأرجون. ورغم أنّ مستوى الطاقة الثالث قد يتسع لـ


> ١٨ إلكترونًا فقط، إلا أنّ للأرجون ثمانية إلكترونات في مستوى الطاقة الخارجي، وهو التوزيع الإلكتروني الأكثر استقرارًا. إذن كلّ دورة في الجدول الدوري تنتهي بعنصر مستقر".

جائزة نوبل

العالم العربي أحمد زويل هو أستاذ في الكيمياء والفيزياء ويعمل مديرًا لمختبر العلوم الجزيئية في معهد كاليفورينا التقني. حاز أحمد زويل على جائزة نوبل في الكيمياء في عام ١٩٩٩م. وقد تمكن العالم زويل وفريق عمله من استخدام الليزر فى ملاحظة وتسجيل تكون الروابط الكيميائية وكسرها.

الشكل ٥ يوضّع هذا الجزء من الجدول الدوري التوزيع الإلكتروني لبعض العناصر. احسب عدد الإلكترونات لكل عنصر، ولاحظ كيف يـز داد العدد كلما انتقلنا في الجدول الدوري من اليسار إلى اليمين.


	1							18
1	Hydrogen 1 H							Helium 2 He
	•	2	13	14	15	16	17	•
2	Lithium 3 Li	Beryllium 4 Be	Boron 5 B	Carbon 6 C	Nitrogen 7 N	Oxygen 8 O	Fluorine 9 F	Neon 10 Ne
3	Sodium 11 Na	Magnesium 12 Mg	Aluminum 13 Al	Silicon 14 Si	Phosphorus 15 P	Sulfur 16 S	Chlorine 17 CI	Argon 18 Ar

الشكل ٦ الغازات النبيلة عناصر مستقرّة؛ لأنّ مستوى طاقتها الخارجي مكتمل، أو لأنّ لها توزيعًا إلكترونيًّا مستقرَّا من ثمانية إلكترونات، مثل عنصر النيون، كما في الشكل.

الشكل ٧ لعنصر الفلور الهالوجيني سبعة إلكترونات في مستوى طاقته الخارجي.

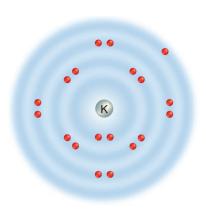
حدّد ماعدد الإلكترونات في مستوى الطاقة الخارجي لعنصر البروم الهالوجيني؟

تصنيف العناصر (عائلات العناصر)

يمكن تقسيم العناصر إلى مجموعات أو عائلات؛ فكل عمود من أعمدة الجدول الدوري - كما في الشكل ٥ - يمثل عائلة من العناصر. ولأنّ الهيدروجين يعد عادة منفصلاً، فإن العمود الأول يضمّ العائلة الأولى التي تبدأ بعنصري الليثيوم والصوديوم. بينما تبدأ العائلة الثانية بالبريليوم والماغنسيوم في العمود الثاني... وكما أن أفراد العائلات البشرية متشابهون في الشكل والسمات نجد كذلك أن عائلة العناصر الواحدة تتشابه في الخصائص الكيميائية؛ لأنّ لها العدد نفسه من الإلكترونات في مستوى الطاقة الخارجي.

وقد أعطى النمطُ التكراري (الدوري) للخصائص العالمَ الكيميائي الروسي ديمتري مندليف عام ١٨٦٩م فكرةَ إنشاء أول جدول دوري للعناصر. فأصدر أول جدول دوري، وهو يشبه كثيرًا الجدول الدوري الحديث.

الغازات النبيلة انظر إلى تركيب عنصر النيون في الشكل ٦، ولاحظ أنّ جميع العناصر التي تليه أيضًا في المجموعة ١٨ لها ثمانية إلكترونات في مستوى الطاقة الخارجي؛ لذا فهي مستقرة، ولا تتحد بسهولة مع غيرها من العناصر. وكذلك نجد أنّ الهيليوم - الذي يحتوي مستوى طاقته الوحيد على إلكترونين فقط مستقر أيضًا. وقد كان يُعتقد سابقًا أنّ هذه العناصر غير نشطة أبدًا. ولذلك كان يُطلق عليها اسم الغازات الخاملة، ولكن بعد أن عرف العلماء أنّ هذه الغازات أكثر تتفاعل أحيانًا أطلقوا عليها اسم الغازات النبيلة، وما زالت هذه الغازات أكثر العناصر استقر ارئا.


ويمكن الاستفادة من استقرار الغازات النبيلة في حماية سلك المصباح الكهربائي من الاحتراق، وفي إظهار اللوحات الإعلانية بأضواء مختلفة الألوان، فعندما يمرّ التيار الكهربائي من خلالها، تشعّ ضوءًا بألوان مختلفة؛ فاللون البرتقالي المائل إلى الأحمر من النيون، والأرجواني من الأرجون، والأصفر من الهيليوم.

الهالوجينات تُسمَّى عناصر المجموعة ١٧ الهالوجينات. ويبيّن الشكل ٧ نموذجًا لعنصر الفلورالذي يقع في الدورة الثانية. ويحتاج الفلور - كغيره من عناصر هذه المجموعة - إلى إلكترون واحد ليصل مستوى طاقته الخارجي إلى حالة الاستقرار. وكلما كان اكتساب الهالوجين لهذا الإلكترون أسهل كان نشاطه أكثر. والفلور أكثر الهالوجينات نشاطًا؛ لأنّ مستوى طاقته الخارجي أقرب إلى النواة. ويقلّ نشاط الهالوجينات كلّما اتجهنا إلى أسفل في المجموعة؛ وذلك بسبب ابتعاد المستوى الخارجي عن النواة. ولهذا يكون البروم أقل نشاطًا من الفلور.

الفلزات القلوية انظر إلى عائلة العناصر في المجموعة الأولى من الجدول الدوري والتي تسمى الفلزات القلوية، تجدأن عناصر هذه المجموعة ومنها الليثيوم والصوديوم والبوتاسيوم - لكل منها إلكترون واحد في مستوى الطاقة الخارجي، كما في الشكل ٨. ولهذا تستطيع التنبؤ بأنّ عنصر الروبيديوم الذي يلي عنصر البوتاسيوم له إلكترون واحد أيضًا في مستوى الطاقة الخارجي. وهذا التوزيع الإلكتروني للعناصر هو الذي يحدّد كيفية تفاعل هذه الفلزات.

ما عدد الإلكترونات في مستويات الطاقة الخارجية لعناصر الفلزات القلوية؟

تكوّن الفلزات القلوية مركبات يشبه بعضها بعضًا؛ فكل منها يحوي إلكترونًا واحدًا في مستوى طاقته الخارجي. وينفصل هذا الإلكترون عنها عند تفاعلها مع عناصر أخرى. وكلّما كان فصل الإلكترون سهلاً كان العنصر أكثر نشاطًا. وعلى العكس من الهالوجينات فإنّ نشاط الفلزات القلوية يزداد كلّما اتجهنا إلى أسفل المجموعة، أيّ أنه كلّما ازداد رقم الدورة (الصف الأفقي) التي يوجد فيها العنصر ازداد نشاطه؛ وهذا بسبب بُعد مستوى الطاقة الخارجي عن النواة. لذا فإنّ الطاقة اللازمة لفصل إلكترون عن المستوى الخارجي البعيد عن النواة أقلّ من الطاقة اللازمة لفصل إلكترون عن المستوى الخارجي القريب من النواة. ولهذا السبب نجد أنّ عنصر السيزيوم الذي في الدورة السادسة يفقد الإلكترون أسهل من الصوديوم الذي في الدورة الثالثة، لذا فالسيزيوم أكثر نشاطًا من الصوديوم.

الشكل ٨ البوتاسيوم -كالليثيوم والصوديوم - له إلكترون واحد في مستوى طاقته الخارجي.

تطبيق العلوم

كيف يساعدك الجدول الدوري على تحديد خصائص حلّ المشكلة

العناصر؟

يعرض الجدول الدوري معلومات حول التركيب الذري للعناصر. فهل تستطيع تحديد العنصر إذا أعطيت معلومات عن مستوى الطاقة الخارجي له؟ استخدم مقدرتك في تفسير الجدول الدوري لإيجاد ما تحتاج إليه.

تحديد المشكلة

عناصر المجموعة الواحدة في الجدول الدوري تحتوي العدد نفسه من الإلكترونات في مستوى الطاقة الخارجي، ويزداد عدد إلكترونات المستوى الخارجي إلكترونا كلما اتجهنا من اليسار إلى اليمين في الدورة. هل يمكنك الرجوع إلى الشكل ٥، وتحديد عنصر ما غير معروف لديك، أو المجموعة التي ينتمي إليها عنصر معروف لديك؟

- عنصر مجهول ينتمي إلى المجموعة الثانية، يحتوي على ١٢ إلكترونًا، إلكترونان منها في مستوى طاقته الخارجي، فما هو؟
- ٧٠ سم العنصر الذي يحتوي على ثمانية إلكترونات، ستة إلكترونات منها في مستوى الطاقة الخارجي.
- السليكون ١٤ إلكترونًا موزعة على ثلاثة مستويات للطاقة، يحتوي مستوى الطاقة الأخير على أربعة إلكترونات. إلى أيّ مجموعة ينتمي السليكون؟
- لديك ثلاثة عناصر تحتوي العدد نفسه من الإلكترونات في مستوى الطاقة الخارجي، أحدها عنصر الأكسجين.
 مستخدمًا الجدول الدوري ماذا تتوقع أن يكون العنصران الآخران؟

تجربة

التمثيل النقطي للالكترونات

الخطوات

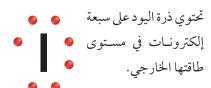
- ارسم جزءًا من الجدول الدوري الذي يتضمن أول ١٨عنصرًا، من الهيدروجين حتى الأرجون، مخصصًا مربعًا طول ضلعه ٣سم لكل عنصر.
- املأ في كل مربع التمثيل النقطى للعنصر.

التحليل

- ماذا تلاحظ على التمثيل النقطي للإلكترونات لعناصر المجموعة الواحدة؟
- صف التغيرات التي تلاحظها في التمثيل النقطي للإلكترونات لعناصر الدورة الواحدة.

الشكل ٩ يبين التمثيل النقطي للإلكترونات عدد الإلكترونات في مستوى الطاقة الخارجي فقط.

اشرح لماذانوضح إلكترونات مستوى الطاقة الخارجي فقط؟


التمثيل النقطى للإلكترونات

درست سابقًا أنّ عدد الإلكترونات في مستوى الطاقة الخارجي لـ ذرة العنصر يحدّد الكثير من الخصائص الكيميائية للذرة، لذا من المفيد عمل نموذج للذرة يُبين الإلكترونات في مستوى الطاقة الخارجي فقط، وسيفيدنا هذا النموذج في توضيح ما يحدث لهذه الإلكترونات في أثناء التفاعل.

إنّ رسم مستويات الطاقة والإلكترونات التي تحويها يتطلب وقتًا، وخصوصًا عندما يكون عدد الإلكترونات كبيرًا، فإذا أردت معرفة كيف تتفاعل ذرات عنصر ما فعليك أن ترسم نماذج بسيطة لهذه الذرات توضح الإلكترونات في مستوى الطاقة الخارجي. التمثيل النقطي للإلكترونات عن مستوى الطاقة عن رمز العنصر محاط بنقاط تمثّل عدد الإلكترونات في مستوى الطاقة الخارجي؛ لأنّ إلكترونات المستوى الخارجي هي التي تبين كيف يتفاعل العنصر.

تمثيل الإلكترونات بالنقاط كيف تعرف عدد النقاط التي يجب رسمها بالنسبة إلى عناصر المجموعات ١- ٢ و ١٣ - ١٨؟ يمكنك الرجوع إلى الجدول الدوري الجزئي في الشكل ٥، وستلاحظ أنّ عناصر المجموعة الأولى لها إلكترون واحد في مستويات طاقاتها الخارجية، وعناصر المجموعة الثانية لها إلكترونان... وهكذا حتى تصل إلى عناصر المجموعة ١٨ التي لها ثمانية إلكترونات في مستوى الطاقة الخارجي، ما عدا الهيليوم الذي له إلكترونان في مستوى طاقته الخارجي، وهي عناصر مستقرة.

وتكتب النقاط في صورة أزواج على الجهات الأربع لرمز العنصر، بوضع نقطة واحدة فوق الرمز ثم عن يمينه ثم أسفل الرمز ثم عن يساره، وبعد ذلك نضع نقطة خامسة في أعلى الرمز لعمل زوج من النقاط، تابع بهذه الوتيرة حتى تكمل النقاط الثمانية كلّها، وحتى يكتمل المستوى. يمكن توضيح هذه العملية بتمثيل نقاط الإلكترونات حول رمز ذرة النيتروجين. ابدأ أولاً بكتابة رمز العنصر الا، ثم جد عنصر النيتروجين في الجدول الدوري لتعرف المجموعة التي ينتمي إليها. ستجد أنّه ينتمي إلى المجموعة ٥١، ولهذا فإن له خمسة إلكترونات في مستوى الطاقة الخارجي، والشكل النهائي للتمثيل النقطي لذرة النيتروجين موضح في الشكل ٩. ويمكن تمثيل الإلكترونات في ذرة اليود بالطريقة نفسها، كما هو موضح في الشكل ٩ أيضًا.

الشكل ١٠ تصنع بعض النماذج بتثبيت قطعها بالصمغ. أمّا في المركبات الكيميائية فتثبت ذرات العناصر بعضها ببعض بالروابط الكيميائية.

استخدام التمثيل النقطي بعد أن عرفت كيف ترسم التمثيل النقطي للعناصر يمكنك استخدامها لتبين كيفية ارتباط ذرات العناصر بعضها مع بعض. <mark>فالروابط الكيميائية</mark> Chemical bonds هي القوى التي تربط ذرتين إحداهما مع الأخرى. وتعمل الروابط الكيميائية على ربط العناصر مثلما يعمل الصمغ على تثبيت قطع النموذج. انظر الشكل ١٠. عندما ترتبط الذرات مع ذرات أخرى يصبح كل منها أكثر استقرارًا؛ وذلك بجعل مستوى طاقتها الخارجي يشبه مستوى الطاقة الخارجي للغاز النبيل.

ماذا قرأت؟ ما الرابطة الكيميائية؟

الخلاصة

البناء الذري

- تقع النواة في مركز الذرة.
- توجد الإلكترونات في منطقة تُسمّى السحابة الإلكترونية.
 - للإلكترونات شحنة سالبة.

ترتيب الإلكترونات

- تُسمّى المناطق المختلفة التي توجد فيها الإلكترونات في الذرة "مستويات الطاقة".
- يتسبع كل مستوى طاقة لعدد محدد من الإلكترونات.

الجدول الدوري

- عدد الإلكترونات يساوي العدد الندري في ذرة العنصر المتعادلة.
- يزداد عدد الإلكترونات في ذرات العناصر إلكترونًا واحدًا كلما اتجهنا من اليسار إلى اليمين في الدورة.

اختبر نفسك

- 1. حدّ ما عدد إلكترونات مستوى الطاقة الخارجي لكلُّ من النيتروجين والبروم؟
- ٢. حل ما عدد إلكترونات مستوى الطاقة الأول والثاني لذرة الأكسجين؟
- ٣. عين أيّ إلكترونات الأكسجين لها طاقة أكبر: الإلكترونات التي في مستوى الطاقة الأول، أم التي في مستوى الطاقة الثاني؟
- ٤. التفكيرالناقد تزداد حجوم ذرات عناصر المجموعة الواحدة كلّم اتجهنا إلى أسفل المجموعة في الجدول الدوري. فسّر ذلك.

تطبيق الرياضيات

٥. حلّ المعادلة بخطوة واحدة يمكنك حساب الحدّ الأقصى للإلكترونات التي يستوعبها أيّ مستوى طاقة باستخدام الصيغة التالية: ٢ن٢ حيث عَشّل "ن" رقم مستوى الطاقة. احسب أقصى عدد من الإلكترونات يمكن أن يوجد في كل مستوى من مستويات الطاقة الخمسة الأولى.

ارتباط العناصر

في هذا الدرس

الأهداف

- تقارن بين الروابط الأيونية والروابط التساهمية.
 - تميز بين الجزيء والمركب.
- تميز بين الرابطة القطبية والرابطة غير القطبية.

الأهمية

تعمل الرابطة الكيميائية على ربط الذرات في الموادّ التي تراها يوميًّا.

🤉 مراجعة المفردات

الإلكترون جسيم سالب الشحنة موجود في السحابة الإلكترونية حول نواة الذرة.

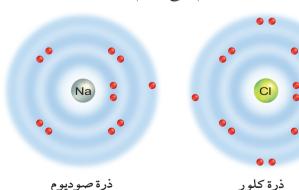
المفردات الجديدة

- الرابطة التساهمية • الأيون
 - الرابطة الأيونية الجزيء
 - المركب
- الرابطة الفلزية الصيغة الكيميائية

• الرابطة القطبية

صوديوم

غاز کلو ر

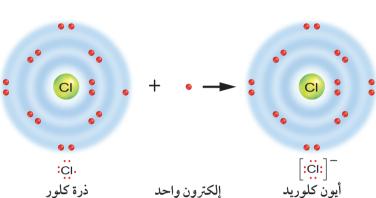

الرابطة الأيونية

هل قمت يومًا بعمل لوحة بتركيب أجزائها المبعثرة؟ ماذا يحدث إذا قلبتَ اللوحة؟ ستتساقط وتتفكك القطع التي ركبتها. إن هذا يشبه العناصرَ عندما يرتبط بعضها مع بعض، إلا أنها لا تتساقط ولا تتفكك إذا قلبت. تخيّل ما يحدث لو تفكّك ملح الطعام إلى صوديوم وكلور عند وضعه على البطاطس المقلية! إنّ ذرات أحد العناصر تكوّن روابط مع غيرها من الذرات باستخدام إلكترونات مستوى الطاقة الخارجي بأربع طرائق: بفقد إلكترونات، أو باكتسابها، أو تجاذبها، أو بمشاركتها مع عنصر آخر.

والصوديوم فلز ليّن فضّي اللّون، كما في الشكل ١١، وهو شديد التفاعل عند إضافته إلى الماء أو الكلور. فما الذي يجعله شديد التفاعل هكذا؟ إذا نظرت إلى التوزيع الإلكتروني لمستويات الطاقة للصوديوم ستجدأن له إلكترونا واحدًا فقط في مستوى الطاقة الأخير. فإذا أزيل هذا الإلكترون أصبح المستوى الخارجي فارغًا، والمستوى قبل الأخير مكتملاً، ممّا يجعل التوزيع الإلكتروني له مشابهًا للتوزيع الإلكتروني للغاز النبيل النيون.

أما الكلور فيكوّن روابط بطريقة مختلفة عن طريقة الصوديوم؛ فهو يكتسب إلكترونًا، وعندها يصبح التوزيع الإلكتروني للكلور مشابهًا للتوزيع الإلكتروني في الغاز النبيل الأرجون.

الشكل ١١ يتفاعل الصوديوم مع الكلور وينتجان بلورات بيضاء تُسمَّى كلوريد الصوديوم (ملح الطعام).



ذرة صوديوم

عند اكتساب ذرة الكلور إلكترونًا من ذرة الصوديوم تصبح الذرتان أكثر استقرارًا، وتتكون رابطة بينها.

Na + Na ذرة صوديوم أيون صوديوم إلكترون واحد

الشكل ١٢ تتكون الأيونات عندما تفقد أو تكسب العناصر الإلكترونات. فعندما يتحد الصوديوم مع الكلور ينتقل إلكترون من ذرة الصوديوم إلى ذرة الكلور، فتصبح ذرة الصوديوم أيونًا موجبًا *Na، وتصبح ذرة الكلور أيونًا سالبًا

الأيونات - مسألة توازن تفقد ذرة الصوديوم كما عرفت سابقًا إلكترونًا، وتصبح أكثر استقرارًا، ونتيجة هذا الفقد يختل توازن شحنتها الكهربائية، فتصبح أيونًا موجبًا؛ لأنّ عدد الإلكترونات حول النواة يقلّ إلكترونًا عن البروتونات في النواة، ومن جهة أخرى يصبح الكلور أيونًا سالبًا باكتسابه إلكترونًا من الصوديوم، ممًّا يزيد عدد الإلكترونات واحدًا على عدد البروتونات في نواته.

فالـذرة التـي تفقـد أو تكتسـب إلكترونًـا لا تكـون ذرة متعادلة، بل تصبـح <mark>أيونًا</mark> .Cl $^-$ ويتم تمثيل أيون الصوديوم بالرمز $^+$ Na، وأيون الكلوريد بالرمز .Ion ويوضّح الشكل ١٢ كيف تتحول الذرة إلى أيون؟

تكون الروابط ينجذب أيون الصوديوم الموجب وأيون الكلور السالب أحدهما إلى الآخر بشدة. وهذا التجاذب الذي يربط الأيونات هو نوع من الروابط الكيميائية تُسمّى الرابطة الأيونية Ionic bond. وفي الشكل ١٣ نجد أنّ أيونات الصوديوم والكلور تكوِّن رابطة أيونية، ويَنتج مركّب أيوني هو كلوريد الصوديوم، أو ما يعرف بملح الطعام. <mark>المركب</mark> Compond مادّة نقية تحوي عنصرين أو أكثر مر تبطين برابطة كيميائية.

Na CI Na®


الأيونات عندما تـذوب المواد الأيونية في الماء تنفصل أيوناتها بعضها عن بعض، وبسبب شحنتها السالبة والموجبة يمكن للأيون توصيل التيار الكهربائي. وإذا كان هناك أسلاك توصيل طرفها مغمور بمحلول مادة أيونية وطرفها الآخر موصول ببطارية فإنّ الأيونات الموجبة ستتحرك نحو القطب السالب، وستتحرك الأيونات السالبة نحو القطب الموجب، حيث يكمل سيلُ الأيونات الدائرة الكهربائية.

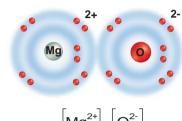
الشكل ١٣ تنشأ الرابطة الأيونية بين ذرتين مختلفتي الشحنة.

صف كيف تصبح الذرة موجبة الشحنة أو سالية الشحنة؟

الشكل ١٤ للماغنسيوم إلكترونان في مستوى طاقته الخارجي.

🕥 يتكون كلوريد الماغنسيوم عند فقد ذرة الماغنسيوم إلكترونًا واحدًا لكلّ ذرة من ذرتي الكلور.

 $\begin{bmatrix} \vdots \ddot{\mathbf{C}} \vdots \end{bmatrix}^{-} \begin{bmatrix} \mathbf{Mg}^{2+} \end{bmatrix} \begin{bmatrix} \vdots \ddot{\mathbf{C}} \vdots \end{bmatrix}^{-}$

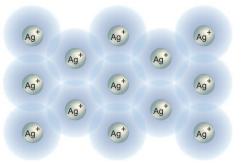

كلوريد الماغنسيوم

فقد واكتساب أكثر لقد درست ما يحدث عندما تفقد ذرة عنصر أو تكتسب إلكترونًا واحدًا. ولكن هل يمكن لذرات العناصر فقد أو اكتساب أكثر من إلكترون؟ لعنصر الماغنسيوم Mg الذي يقع في المجموعة الثانية إلكترونان في مستوى طاقته الخارجي، وعندما يفقدهما يصبح المستوى الخارجي له مكتملاً. وقد تكتسب ذرتا الكلور هذين الإلكترونين كما هو موضّح في الشكل ١٤-أ. لذا يكون الناتج أيون ماغنسيوم Mg⁺² وأيونَيْ كلوريد 2Cl-، فينجذب أيونا كلوريد السالبان نحو أيون الماغنسيوم الموجب ويكوّنان روابط أيونية، وينتج عن التفاعل $MgCl_2$ مركّب كلو ريد الماغنسيو

تحتاج بعض العناصر _ ومنها الأكسجين _ إلى اكتساب إلكترونين لتصل إلى حالة الاستقرار. ويمكن تحقق ذلك من خلال اكتساب إلكترونين تفقدهما ذرة الماغنسيوم لتكوين مركّب أكسيد الماغنسيوم MgO، كما هو موضّح في الشكل ١٤ - ب. كما يمكن أن يكوّن الأكسجين مركّبات مماثلة مع أيّ أيون موجب من المجموعة الثانية.

الرابطة الفلزية

لقد عرفت كيف تكوّن ذرات العناصر الفلزية روابط أيونية مع ذرات عناصر لا فلزية. كما أنَّ الفلزات كذلك تكوّن روابط مع عناصر فلزية أخرى، ولكن بطريقة مختلفة. ففي الفلزات تكون الإلكترونات في مستويات الطاقة الخارجية للذرات المنفردة غير مترابطة بدرجة كبيرة، لذا يمكن النظر إلى الفلز في الحالة الصلبة على أنه بحر من الإلكترونات الحرة الحركة التي تتحرك فيها أيونات الفلز الموجبة، كما هو موضّح في الشكل ١٥. وتنشأ الروابط الفلزية Metallic bonds نتيجة للتجاذب بين إلكترونات المستوى الخارجي مع نواة الذرة من جهة، ونوى الذرات الأخرى من جهة ثانية داخل الفلز في حالته الصلبة. وهذه الرابطة تؤثر في خصائص الفلز. فمثلاً عند طُرْق فلزِّ ما وتحويله إلى صفيحة، أو سحبه على صورة سلك، فإنّه لا ينكسر، بل على العكس تتراكب طبقات من ذرات الفلز بعضها فوق بعض. ويعمل التجمّع المشترك من الإلكترونات على تماسك الذرة. والرابطة الفلزية سبب آخر للتوصيل الجيد للتيار الكهربائي؛ حيث تنتقل الإلكترونات الخارجية من ذرة إلى أخرى لتنقل التيار الكهربائي.



 $\left[Mg^{2+} \right] \left[O^{2-} \right]$ أكسيد الماغنسيوم

📻 يتشكّل أكسيد الماغنسيوم عندما تعطي (تفقد) ذرة الماغنسيوم إلكترونين لذرة الأكسجين.

حدد التوزيع الإلكتروني لكل من: كبريتيد الماغنسيوم وأكسيد الكالسيوم.

الشكل ١٥ لا ترتبط الإلكترونات الخارجية لذرات الفضة في الرابطة الفلزية مع أيّ ذرة فضة، وهذا ما يسمح لها بالتحرّك والتوصيل الكهربائي.

الرابطة التساهمية - مشاركة

بعض العناصر غير قادرة على فقد أو اكتساب إلكترونات بسبب عدد الإلكترونات التي في المستوى الخارجي؛ فعنصر الكربون مثلاً يحوي ستة بروتونات وستة إلكترونات، أربعة من هذه الإلكترونات في مستوى الطاقة الخارجي، ولكي تصل ذرة الكربون إلى حالة الاستقرار يجب أن تفقد أو تكتسب أربعة إلكترونات، وهذا صعب لأنّ فقد أو اكتساب هذا القدر من الإلكترونات يتطلب طاقة كبيرة جدًّا، لذلك تتم المشاركة بالإلكترونات.

الرابطة التساهمية يصل الكثير من ذرات العناصر إلى حالة الاستقرار عندما تتشارك بالإلكترونات. وتُسمّى الرابطة الكيميائية التي تنشأ بين ذرات العناصر اللافلزية من خلال التشارك بالإلكترونات الرابطة التساهمية Covalent bond. وتنجذب هذه الإلكترونات المشتركة إلى نواتي الذرتين، فتتحرّك الإلكترونات بين مستويات الطاقة الخارجية في كلتا الذرتين في الرابطة التساهمية، ولذلك يكون لكلتا الذرتين مستوى طاقة خارجي مكتمل لبعض الوقت، وتُسمّى المركبات الناتجة عن الرابطة التساهمية بالمركبات الجزيئية.

الله عادا قرأت؟ كيف تكوّن الذراتُ الروابط التساهمية؟ عند الله التساهمية؟

تكوّن ذرات بعض العناصر _ من خلال الروابط التساهمية _ جسيمات متعادلة؛ إذ تحوي العدد نفسه من الشحنات الموجبة والسالبة. وهذه الجسيمات المتعادلة التي تكوّنت عند مشاركة الذرات في الإلكترونات تُسمّى الجزيئات Molecules. والجزيء هو الوحدة الأساسية للمركبات الجزيئية. تأمل كيف تتكون الجزيئات من خلال مشاركة الإلكترونات، في الشكل ١٦٠. لاحظ أنّه لا يوجد أيونات في هذا التفاعل؛ لأنّه لم يفقد أو يكتسب أيّ إلكترونات. والبلورات الصّلبة _ ومنها كلوريد الصوديوم ـ لا يمكن تسميتها جزيئات؛ لأنّ الوحدة الأساسية لها هي الأيون، وليس الجزيء.

تجربة

بناء نموذج لركب الميثان

الخطوات

- ۱. استخدم أوراقًا دائريّة الشكل ذات ألوان مختلفة لتمثّل البروتونات والنيوترونات والإلكترونات، واصنع نموذجًا ورقيًّا يمثّل ذرة الكربون وأربعة نماذج أخرى لتمثّل ذرات الهيدروجين.
- استخدم نماذج الذرات السابقة لبناء نموذج لجزيء الميثان بتكوين روابط تساهمية، حيث يتكون جزيء الميثان من أربع ذرات هيدروجين مرتبطة كيميائيًّا مع ذرة كربون واحدة.

التحليل

- هل التوزيع الإلكتروني لذرتي الهيدروجين والكربون في جزيء الميثان يشبه التوزيع الإلكتروني لعناصر الغازات النبيلة؟ فسر إجابتك.
- ٢. هل لجزيء الميثان شحنة كهربائية؟

الشكل ١٦ الرابطة التساهمية طريقة أخرى لجعل الذرات أكثر استقرارًا؟ إذ تسمح مشاركة الإلكترونات لكل ذرة بالحصول على مستوى طاقة خارجي مستقر. ذرات العناصرالتي تظهر في الشكل تكوّن روابط تساهمية أحادية.

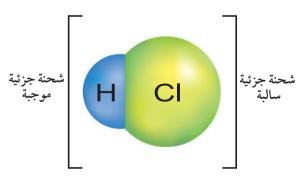
الشكل ۱۷ يمكن للذرة تكوين رابطة تساهميّة بواسطة إلكترونين أو ثلاثة.

في جزيء ثاني أكسيد الكربون تشترك (أو تساهم) ذرة الكربون بإلكترونين مع كل ذرة أكسجين لتكوين رابطتين ثنائيتين. وكل ذرة أكسجين تشترك بإلكترونين مع ذرة الكربون.

تشارك كل ذرة نيتروجين بثلاثة إلكترونات لتكون رابطة ثلاثية

الرابطة الثنائية والثلاثية تشارك الذرة أحيانًا بأكثر من إلكترون واحد مع الذرات الأخرى. ففي جزيء ثاني أكسيد الكربون الموضّح في الشكل ١٧ شاركت كل ذرة أكسجين بإلكترونين مع ذرة الكربون. وقد شاركت أيضًا ذرة الكربون بإلكترونيين مع كل ذرة أكسجين، أي أنّ زوجين من الإلكترونات قد الكربون بإلكترونيين مع كل ذرة أكسجين، أي أنّ زوجين من الإلكترونات قد ارتبط بعضهما مع بعض بالرابطة التساهمية، وتُسمّى في هذه الحالة بالرابطة الثنائية. يوضح الشكل ١٧ أيضًا تشارُك ثلاثة أزواج من الإلكترونات بذرتي نيتروجين في تكوين جزيء النيتروجين. وتُسمّى الرابطة التساهمية في هذه الحالة الرابطة الثلاثية.

الجزيئات القطبية والجزيئات غير القطبية

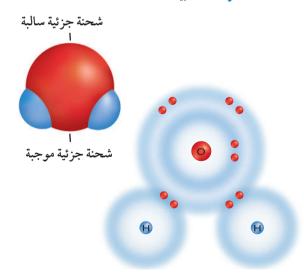

لقد درست كيف تتشارك الذرات بالإلكترونات لكي تصل إلى حالة الاستقرار. ولكن هل تتشارك الـذرات بالإلكترونات بشكل متساو دائمًا؟ الجواب: لا؛ فبعض الذرات تجذب إلكترونات نحوها أكثر من غيرها. فالكلور مثلاً يجذب الإلكترونات نحوه أكثر من الهيدروجين. وعندما تنشأ الرابطة التساهمية بين الكلور والهيدروجين، تبقى الإلكترونات المشتركة بجانب الكلور فترة أطول من

بقائها بجانب الهيدروجين.

هذه المشاركة غير المتساوية تجعل أحد جانبي الرابطة سالبًا أكثر من الطرف الآخر، كأقطاب البطارية، كما في الشكل ١٨. وتُسمّى هذه الروابط بالروابط القطبية. والرابطة القطبية Polar bond يتم فيها مشاركة الإلكترونات بشكل غير متساو. ومن الأمثلة على الرابطة القطبية أيضًا تلك الرابطة التي تحدث بين الأكسجين والهيدروجين.

الروابط الكيميائية ارجع إلى قراسة التجارب العملية

الشكل ۱۸ كلوريـد الهيدروجين مركّب تساهمي قطبي.

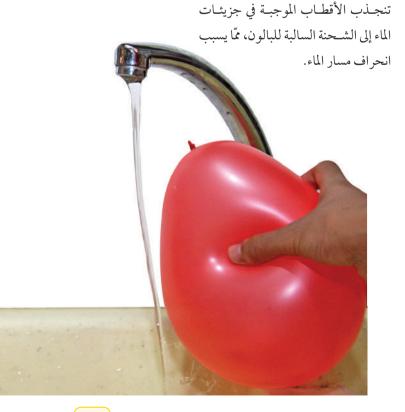

جزيئات الماء القطبية تتكوّن جزيئات الماء عندما يتشارك الهيدروجين والأكسجين بالإلكترونات. يوضّح الشكل ١٩ أنّ هذا التشارك غير متساو؛ فالأكسجين له النصيب الأكبر من الإلكترونات في كلّ رابطة، كما أنه يحمل شحنة جزئية سالبة، بينما يحمل الهيدروجين شحنة جزئية موجبة، ولهذا السبب يكون الماء قطبيًّا؛ إذ له قطبان مختلفان كالمغناطيس تمامًا. ولذا، فعند تعرُّض الماء لشحنة سالبة، تصطفّ جزيئاته كالمغناطيس لتقابل الشحنة السالبة بقطبها الموجب. ويمكنك ملاحظة ذلك عند تقريب بالون مشحون من خيط الماء المنساب من الصنبور، كما يبين الشكل ١٩. ونظرًا إلى وجود قطبين مختلفين في الشحنة لجزىء الماء فإن جزيئاته تتجاذب بعضها إلى بعض أيضًا، وهذا التجاذب يحدّد الكثير من الخصائص الفيزيائية للماء.

أمّا الجزيئات عديمة الشحنة فتُسمّى الجزيئات غير القطبية. وبما أنّ قدرة العناصر يختلف بعضها عن بعض في جذب الإلكترونات؛ فالروابط غير القطبية هي الروابط التي تنشأ بين ذرات العنصر نفسه، ومنها الرابطة غير القطبية الثلاثية التي تنشأ بين ذرات النيتروجين في جزيء النيتروجين.

وهناك بعض المركبات الجزيئيّة التي تكوِّن بلورات كالمركبات الأيونية تمامًا، إلا أنّ الوحدة الأساسية لها هي الجزيء. ويوضح الشكل ٢٠ النمط الذي تترتب فيه الوحدات الأساسية (الجزيء أو الأيون) في البلورات الأيونية والجزيئية.

الشكل ١٩ تتشارك ذرتا هيدروجين بالإلكترونات مع ذرة أكسجين بصورة غير متساوية. تنجذب الإلكترونات إلى الأكسجين أكثر من الهيدروجين. ويبين هذا النموذج كيفية انفصال الشحنات أو استقطابها.

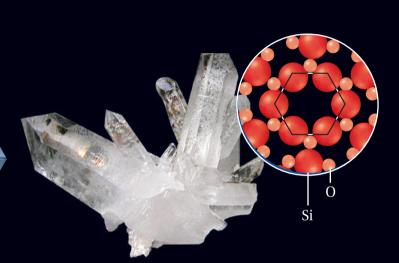
عرّف القطبية.


الجزيئات القطبية

الصابون والمنظفات.

ارجع إلى المواقع الإلكترونية عبر شبكة الإنترنت للبحث عن معلومات حول

نشاط الزيت والماء لايمتزجان معًا، ولكنك إذا أضفت بضع قطرات من سائل تنظيف الصحون إليهما فستلاحظ أنّ الزيت يصبح قابلاً للذوبان في الماء، ويكونان طبقة واحدة بدلًا من طبقتين.


فسّر لماذا يساعد الصابون على ذوبان الزيت في الماء؟

تركيب البلورة

الشكل ۲۰

هناك الكثير من المواد الصلبة على هيئة بلورات، سواء كانت حبيبات صغيرة كملح الطعام، أو كبيرة مثل الكوارتز، وأحيانًا لا يكون هذا الشكل البلوري إلا انعكاسًا لترتيب جسيهاتها. ويساعد معرفة التركيب البلوري للمواد الصلبة الباحثين على فهم خصائصها الفيزيائية. وهذه نهاذج لبعض البلورات بشكليها المكعّب والسداسي.

سداسي الأوجه بلورات الكوارتز أعلاه سداسيّة الأوجه، تمامًا كبلورات الثلج التي في الأعلى عن اليسار؛ لأنّ الجزيئات التي تكوّن بلورة الكوارتز والجزيئات التي تكوّن بلورة الثلج ترتب نفسها في أنهاط سداسية.

Na⁺

Na⁺

Hecli

Hecli

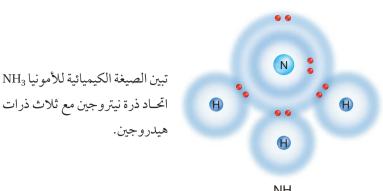
المحقب بلورة ملح الطعام عن اليمين، وبلورة الفلورايت في الأعلى هي بلورات مكعبة الشكل، وهذا الشكل انعكاس لترتيب الأيونات في البلورة في صورة مكعب.

كتابة الرموز والصيغ الكيميائية

بدأ الكيميائيون في العصور الوسطى محاولات جادة لاكتشاف علم الكيمياء. وعلى الرغم من إيمان الكثيرين منهم بالسحر وتحويل المواد (مثل تحويل الرصاص إلى الذهب)، إلا أنّهم تعلموا الكثير عن خصائص العناصر، واستخدموا الرموز للتعبير عنها في التفاعلات، انظر الشكل ٢١.

	كبريت	حديد	خارصين	فضة	زئبق	رصاص
قديمًا	£	○ ;;	抖		ğ	5
حديثا	S	Fe	Zn	Ag	Hg	Pb

الشكل ٢١ استخدم الكيميائيون القدماء الرموز لوصف العناصر والعمليات. بينما نجد الرموز الحديثة للعناصر عبارة عن أحرف يسهل فهمها في أنحاء العالم كافة.

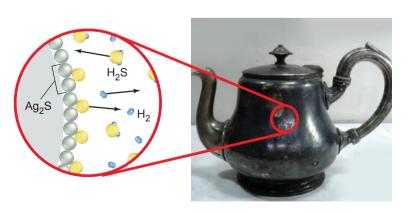

رموز ذرات العناصر استخدم الكيميائيون حديثًا الرموز أيضًا للتعبير عن العناصر؛ لكي يفهمها جميع الكيميائيين في كل مكان. فكل عنصر يُعبّر عنه برمز مكوّن من حرف أو حرفين أو ثلاثة. وقد اشتُق الكثير من الرموز من الحرف الأول من اسم العنصر، ومنها الهيدروجين Hydrogen))، والكربون Carbon) C وبعض العناصر اشتُقت رموزها من الحرف الأول من اسمها، ولكن بلغة أخرى كالبوتاسيوم K، الذي يعود إلى اسمه اللاتيني (Kalium).

صيغ المركبات يمكن التعبير عن المركبات باستخدام رموز العناصر والأرقام. انظر الشكل Υ الذي يوضّح كيفية ارتباط ذرتي هيدروجين برابطة تساهمية، لينتج جزيء الهيدروجين الذي يمكن تمثيله بالرمز H_2 . ويشير الرقم الذي يُكتب بجانب الرمزمن أسفل إلى عدد الذرات. وفي جزيء الهيدروجين H_2 يدلّ الرقم "2" على أنّ هناك ذرتي هيدروجين في الجزيء.

 H_2 H_2 H_2

الشكل ٢٢ تبين الصيغ الكيميائية نوع الذرات وعددها في الجزيء حيث يعني الرقم 2 بعد رمز الهيدروجين أنّ هناك ذري هيدروجين في الجزيء.

الشكل ٢٣ تبين الصيغ الكيميائية نوع الذرات وعددها في الجزيء. استنتج ما الذي يدل عليه الرقم °۲″ في ۱۳۳


اتحاد ذرة نيتروجين مع ثلاث ذرات هيدروجين.

الصيغ الكيميائية تزودنا الصيغة الكيميائية Chemical formula بمعلومات عن العناصر التي تكون مركبًا ما، وعدد ذرات كل عنصر في ذلك المركب. وفي حالة وجود أكثر من ذرة للعنصر نفسه فإنّ عدد الذرات يكتب أسفل يمين العنصر، فإذا لم يكن هناك رقم سفلي دلُّ ذلك على أن هناك ذرة واحدة من العنصر.

ما الصيغة الكيميائية؟ وعلام تدل؟

بعد أن عرفت شيئًا عن كيفية كتابة الصيغ الكيميائية، يمكنك الرجوع إلى المركبات الكيميائية التي درستها، وتوقّع صيغها الكيميائية. يتكون جزيء الماء من ذرة أكسجين وذرتي هيدروجين، ولذلك فإنّ صيغته الكيميائية H₂O. والأمونيا _كما في الشكل ٢٣ _ مركّب تساهمي يتكوّن من ذرة نيتروجين وثلاث ذرات هيدروجين، فتكون صيغته الكيميائية NH₃.

المادّة السوداء التي تظهر على أواني الفضة _ كما يظهر في الشكل ٢٤ _ مركّب ينتج عن اتحاد ذرتين من الفضة وذرة واحدة من الكبريت. لو عرف الكيميائيون القدماء تركيب المادّة السوداء التي تظهر على الفضة، تُرى كيف كانوا سيكتبون الصيغة الكيميائية لهذا المركّب؟ إنّ الصيغة الحديثة للمركّب الأسود الناتج عن الفضة هي ${\rm Ag}_2 {\rm S}$. وهي صيغة تدلّ على أنّه مركّب يتكوّن من ذرتي فضة وذرة كبريت.

الشكل ٢٤ المادة السوداء التي تظهر على أوانى الفضة هي كبريتيد الفضة Ag₂S وتبين الصيغة أن ذرتين من الفضة تتحدان مع ذرة من الكبريت.

الخلاصة

أربعة أنواع من الروابط

- الرابطة الأيونية هي قوى الجذب التي تربط بين الأيونات.
- تنشأ الرابطة الفلزية عندما تتجاذب أيونات الفلزات مع الإلكترونات الحرة الحركة.
- تنشأ الرابطة التساهمية عندما تتشارك الذرات بالإلكترونات.
- تنشأ الرابطة التساهمية القطبية عن تشارك غير متساو بالإلكترونات.

الرموز الكيميائية

- يمكن التعبير عن المركبات باستخدام الصيغ الكيميائية.
- تزودنا الصيغة الكيميائية بمعلومات عن العناصر التى تكوِّن مركبًا ما، وعدد ذرات كل عنصر في ذلك المركب.

اختبرنفسك

- ١. حدد استخدم الجدول الدوري لتحدّد إذا كان عنصرا الليثيوم والفلور يكوّنان أيونات سالبة أو موجبة، واكتب الصيغة الناتجة عن اتحادهما.
- ٢. قارن بين الروابط القطبية والروابط غير القطبية.
- ٣. فسر كيف يمكن معرفة نسبة العناصر الداخلة في المركّب من خلال الصيغة الكيميائية؟
- ٤. التفكير الناقد للسليكون أربعة إلكترونات في مستوى الطاقة الخارجي، فما الرابطة التي يكونها السليكون مع العناصر الأخرى؟ وضّح ذلك.

تطبيق المهارات

•. **توقع** ما أنواع الروابط التي تنشأ بين كل زوجين من الذرات التالية: (الكربون والأكسجين)، (البوتاسيوم والبروم)، (الفلور والفلور).

العارون المواقع الإلكترونية لزيد من الاختبارات القصيرة ارجع إلى الموقع الإلكتروني: www.obeikaneducation.com

دليقتسا من واقع الدياة

نمذج واخترع

التركيب الذري

الأهداف

- تصمّم نموذجًا لعنصر ما.
- تلاحظ النماذج التي صممتها ونفذتها المجموعات الأخرى، وتحدّد العناصر التي تم تثيلها.

المواد والأدوات

- أشرطة مغناطيسية مغطاة بالمطاط
 - لوح مغناطيسي
 - حلوى مغطاة بالشوكولاتة
 - مقص
 - ورق
 - قلم تخطيط
 - قطع نقدية

إجراءات السلامة

تحنير: لا تأكل أيّ طعام داخل المختبر. واغسل يديك جيدًا. وخذ الحذر أثناء استخدام المقص.

🔵 سؤال من واقع الحياة

طوّر العلماء نماذج جديدة للذرة مع تطور العلم وحصولهم على معلومات جديدة حول تركيب الـذرة. وأنت عند تصميمك نموذجًا خاصًّا بك، وبدراستك نماذج زملائك، ستتعرف الكيفية التي يترتب بها كلّ من البروتونات والنيوترونات والإلكترونات في الذرة. فهل يمكن تحديد هوية عنصر ما اعتمادًا على نموذج يوضح ترتيب الإلكترونات، والبروتونات، النيوترونات في ذرته؟ وكيف يمكن لمجموعتك تصميم نموذج لعنصر ما لتتمكّن باقي المجموعات من تعرّفه؟

🚺 تصميم نموذج

- 1. اختر عنصرًا من الدورة ٢ أو ٣ من الجدول الدوري. كيف يمكنك تحديد أعداد البروتونات والإلكترونات والنيوترونات في ذرة ما إذا علمت العدد الكتلى للعنصر؟
- كيف يمكنك توضيح الفرق بين البروتونات والنيوترونات؟ وما الموادّ التي ستستخدمها في تمثيل الإلكترونات؟ وكيف يمكن أن تمثّل النواة؟
- ٢٠ كيف يمكنك تصميم نموذج يُمثّل ترتيب الإلكترونات في الـذرة؟ وهل سيكون للذرة شحنة؟ وهل من الممكن تعرّف الذرة من عدد بروتوناتها؟
 - تحقّق من موافقة معلمك على خطة عملك قبل بدء التنفيذ.

استخدام الطرائق العلمية

🚺 اختبار النموذج

- ١. نَفُد النموذج الذي وضعته، ثم دوّن ملاحظاتك في دفتر العلوم، بحيث تتضمن رسمًا توضيحيًّا للنموذج.
 - نُفُذ نموذجًا لعنصر آخر.
 - ٢. لاحظ النماذج المختلفة التي صمّمها زملاؤك في الصف، وتعرف العناصر التي تم تمثيلها.

🚫 تحليل البيانات

- ١. اكتب العناصر التي تعرّفتها من خلال النماذج التي صمّمها زملاؤك.
- ٢. حدّ أيّ الجسيمات توجد دائمًا في أعداد متساوية في الذرة المتعادلة؟
 - توقع ما يحدث لشحنة الذرة إذا تحرر منها إلكترون واحد.
- ٤. صف ما يحدث لشحنة الذرة عند إضافة إلكترونين إليها، وعند إزالة بروتون وإلكترون منها.
 - قارن بين نموذجك ونموذج السحابة الإلكترونية للذرة؟

🔕 الاستنتاج والتطبيق

- 1. حدّد الحدّ الأدنى من المعلومات التي تحتاج إليها لتحديد ذرة عنصر ما.
- ٢. فسر إذا صمّمت نموذجًا لنظير (بورون-١٠)، ونموذجًا آخر لنظير (بورون-١١)، فما أوجه الاختلاف بينهما؟

تــولامـــل

ببياناتك

قارن بين نموذجك ونماذج زملائك، وناقشهم في الاختلافات التي تلاحظها.

اكتشاف العناصر المشعة

درس العالم هنري بكريل خصائص الأشعة السينية باستخدام بعض المعادن التي تتميز بخاصية التضوّء من خلال تعريضها لأشعة الشمس، ثم استخدام شريحة تصوير فوتوغرافي لملاحظة تأثير الأشعة عليها. وفي أحد أيام شهر فبراير من عام ١٨٩٦م أراد هذا العالِم إعادة التجربة باستخدام بلورات تحتوي على عنصر اليورانيوم تتميز بخاصية التضوّء، ولكن لسوء الحظ كان الجو ملبدًا بالغيوم، فقرر تأجيل التجربة ليوم آخر،

ووضَع البلورة والشريحة الفوتوغرافية معًا في وعاء مظلم. ونتيجة لتحسّن الطقس بعد عدة أيام قرر العالِم إعادة التجربة؛ لكنه فوجئ بوجود آثار على شريحة التصوير الفوتوغرافية تدلّ على تعرضها للأشعة من العينة المحتوية على اليورانيوم. وعند إعادة التجربة عدة مرات استنتج العالم بكريل أن اليورانيوم يُصدر أشعة بشكل تلقائي من دون مؤثر خارجي، ومن هنا تم اكتشاف النشاط الإشعاعي للعناصر المشعة.

من استخدامات اليورانيوم السلمية توليد الطاقة الكهربائية باستخدام المفاعلات النووية.

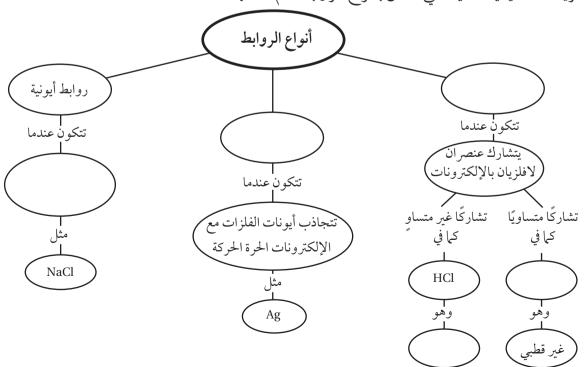
العلوم عبر المواقع الإلكترونية ارجع إلى المواقع الإلكترونية عبر شبكة الإنترنت.

ابحث عن العناصر المشعّة، وإسهامات العلماء - وخصوصًا العالمة ماري كوري - في اكتشافها. ثم اكتب بحثًا يتضمن استخدامات هذه العناصر، وأهميتها في المجالات المختلفة وبخاصة الطبية منها.

دليل مراجعة الفصل

مراجعـة الأفكار الرئيسـة

الدرس الأول اتحاد الذرات


- 1. تترتب الإلكترونات الموجودة في السحابة الإلكترونية للذرة في مستويات الطاقة.
- ٢. يمكن أن يستوعب كل مستوى طاقة عددًا محددًا من الإلكترونات.
- ٢٠. يزودنا الجدول الدوري بقدر كبير من المعلومات عن العناصر.
- يزداد عدد الإلكترونات عبر الدورة في الجدول الدوري كلما انتقلنا من اليسار إلى اليمين.
- الغازات النبيلة مستقرّة؛ لأنّ مستوى طاقتها الخارجي مكتمل.
- بين التمثيل النقطي للإلكترونات إلكترونات مستوى
 الطاقة الخارجي للذرة.

الدرس الثاني ارتباط العناصر

- 1. تصبح الذرة مستقرّة باكتساب عدد محدد من الإلكترونات أو بفقدانها أو بالمشاركة بها، بحيث يصبح مستوى طاقتها الخارجي مكتملاً.
- تنشأ الرابطة الأيونية بين فلز عندما يفقد إلكترونًا أو أكثر، ولا فلز عندما يكتسب إلكترونًا أو أكثر.
- تنشأ الرابطة التساهمية عندما تتشارك ذرتان لا فلزيتان
 أو أكثر بالإلكترونات.
- تنشأ الرابطة التساهمية القطبية عن تشارك غير متساو (غير متجانس) في الإلكترونات.
- •. تزودنا الصيغة الكيميائية بمعلومات عن العناصر التي تكون مركبًا ما، وعدد ذرات كل عنصر في ذلك المركب.

تصور الأفكار الرئيسة

انسخ الخريطة المفاهيمية التالية التي تتعلق بأنواع الروابط، ثم أكملها:

0

17. أيّ ممّا يلي يصف ما يمثّله الرمز - Cl:

أ. مركب أيون سالبب. جزيء قطبيد. أيون موجب

١٣. أيّ المركبات التالية غير أيوني:

أ. NaF أ.

 $MgBr_2$. . CO.ب

: H_2O ممّا يلى ليس صحيحًا فيما يتعلق بجزىء . 1٤

أ. يحوي ذرتي هيدروجين.

ب. يحوي ذرة أكسجين.

ج. مركّب تساهمي قطبي.

د. مركّب أيوني.

ا شحنة جزئية موجبة

- ١٥. ما الذي يحدث للإلكترونات
 عند تكوين الرابطة التساهمية القطبية؟
 - أ. تُفقد.
 - ب. تُكتسب.
- ج. تتشارك فيها الذرات بشكل متساو (متجانس).
 - د. تتشارك فيها الذرات بشكل غير متساوٍ (غير متجانس).
- ١٦. ما الوحدة الأساسية لتكوين المركبات التساهمية؟

أ. أيونات ج. جزيئاتب. أملاح د. أحماض

١٧. ما الذي يدل عليه الرقم ٢ الموجود في الصيغة الكيميائية CO₂؟

 CO_2 أ. أيونَيْ أكسجين $^{-2}O^2$ ج. جزيئَيْ CO_2 ب. درتَيْ أكسجين CO_2 د. مركبَيْ CO_2

استخدام المفردات

قارن بين كل زوجين من المصطلحات التالية:

- أيون جزيء
- ۲. جزيء مرکب
- ٣. أيون التمثيل النقطي للإلكترونات
 - ٤. الصيغة الكيميائية الجزيء
- الرابطة الأيونية الرابطة التساهمية
- السحابة الإلكترونية التمثيل النقطي للإلكترونات
 - ٧. الرابطة التساهمية الرابطة القطبية
 - ٨. المركب الصيغة الكيميائية
 - الرابطة الأيونية الرابطة الفلزية

تثبيت المفاهيم

اختر رمز الإجابة الصحيحة فيما يلي:

١٠. أي ممّا يلي يعد جزيئًا تساهميًّا:

ج. Na

 Cl_2 .

د. Al

ب. Ne

11. ما رقم المجموعة التي لعناصرها مستويات طاقة خارجية مستقرة:

ج. ۱٦

أ. ١

د. ۱۸

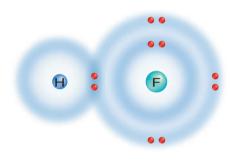
ب. ۱۳

أنشطة تقويم الأداء

وبعض المركبات التي تكوّنها.

۱۸. وضّح لماذا تكوِّن عناصر المجموعتين ١ و ٢ وعناصر معنص دوحة تعرض فيها خصائص إحدى المجموعتين ١٦ و ١٧ مركبات كثيرة؟ مجموعات العناصر التي درستها، على أنّ تتضمن المجموعتين ١٦ و ١٧ مركبات كثيرة؟

تطبيق الرياضيات


اعتمد على الشكل التالي للإجابة عن السؤال رقم ٢٦ في دفتر العلوم.

صيغ المركبات				
عدد الذرات اللافلزية	عدد الذرات الفلزية	المركب		
		Cu ₂ O		
		Al_2S_3		
		NaF		
		PbCl ₄		

- ١٣٦. استخدام الجداول املاً العمود الثاني بعدد الذرات الفلزية، والعمود الثالث بعدد الذرات اللا فلزية.
- . **٢٧**. **مستويات الطاقة** احسب أقصى عدد من الإلكترونات التي يمكن أن يستوعبها مستوى الطاقة السادس.

التفكيرالناقد

استعن بالرسم التوضيحي التالي للإجابة عن السؤالين ١٩ و ٢٠:

- 19. وضح ما نوع الرابطة الكيميائية الموضحة في الرسم؟
- ٢٠. توقع هل تشاركت الذرتان بالإلكترونات بصورة متساوية أم غير متساوية؟ وأين تكون الإلكترونات معظم الوقت؟
- ٢١. حلّ لماذا ينفصل أيونا الصوديوم والكلور أحدهما عن الآخر عندما يذوب ملح الطعام في الماء؟
- ۲۲. وضح لماذا تكون درجة غليان الماء أعلى كثيرًا من درجة غليان الجزيئات المشابهة له في الكتلة اعتمادًا على حقيقة كون الماء مركّبًا قطبيًّا.
- ٢٣. توقع لدينا مركبان: CuCl و CuCl₂ فإذا تحلل كلٌ منهما إلى مكوناته الأصلية؛ النحاس والكلور، فتوقع أيّ المركبين السابقين يعطي كمية أكبر من النحاس؟ وضّح إجابتك.
- . ٢٤. خريطة مفاهيمية ارسم خريطة مفاهيمية مبتدئًا بمصطلح "الرابطة الكيميائية"، ومستخدمًا جميع المفردات الواردة في فقرة "استخدام المفردات".

الفكرة <mark>العامة</mark>

يعاد ترتيب ذرات العناصر في المواد المتفاعلة في أثناء التفاعلات الكيميائية لتكوين نواتج لها خصائص كيميائية مختلفة.

الدرس الأول

الصيغ والمعادلات الكيميائية الفكرة الرئيسة الذرات لا تُستحدث ولا تفنى في التفاعلات الكيميائية، ولكن يعاد ترتيبها فقط.

الدرس الثاني

سرعة التفاعلات الكيميائية الفكرة الرئيسة تتأثر سرعة التفاعل الكيميائي بعدة عوامل، منها: درجة الحرارة، والتركيز، ومساحة السطح، والعوامل المساعدة (المحفزات والمثبطات).

الشركة السعودية للصناعات الأساسية (سابك)

التفاعلات الكيميائية

ما أنواع التفاعلات الكيهيائية التي تحدث في محطات تصنيع الهوادْ الكيهيائية؟

تزوّدنا محطات إنتاج المواد الكيميائية المصنَّعة بالعديد من المواد الخام والأساسية التي تدخل في التفاعلات الكيميائية لإنتاج مواد نستخدمها في حياتنا اليومية، مثل: القرص المدمج الذي تستمع إليه، والمنظفات، ومستحضرات التجميل، والأدوية.... وغيرها.

دفتر العلوم ما المنتجات الأخرى التي تعتقد أن إنتاجها يعتمد على محطات تصنيع المواد الكيميائية؟

نشاطات تمهيدية

تُعرِّفُ التفاعل الكيميائي

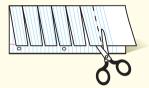
الكثير من الموادّ تتغير من حولنا كل يـوم، ومنها احتراق الوقود لتزويد المركبات بالطاقة، وتحوّل ثاني أكسيد الكربون والماء إلى أكسجين وسكر في النباتات. كما يعد كلّ من قلى البيض أو خبر المعجنات تغيرًا أيضًا. وهذه التغيرات تُسمّى التفاعل الكيميائي. ستشاهد في هذه التجربة بعض التغيرات الكيميائية المألوفة لديك.

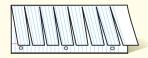
تحذير، لا تلمس أنبوب الاختبار؛ لأنه ساخن. توخّ الحذر عند استعمال اللهب، وتأكد أنك لا توجُّه أنبوب الاختبُّار في أثناء التسخين إلى أحد من زملائك.

- ١. ضع ٣ جم من السكر في أنبوب اختبار كبير.
 - ٢. أشعل اللهب بحذر.
- ٣. استخدم الماسك لرفع أنبوب الاختبار فوق اللهب لمدة ٥٤ ثانية، أو حتى تلاحظ تغيرًا في السكر.
 - ٤. لاحظ التغيرات التي تحدث.
- التفكير الناقد صف في دفتر العلوم التغيرات التي حدثت في أنبوب الاختبار. تُرى، ماذا حدث للسكر؟ هل المادّة التي بقيت في الأنبوب بعد التسخين هي المادة نفسها التي بدأ بها التفاعل؟

المطويسات

منظمات الأفكار


الكيميائي.


التفاعل الكيميائي اعمل المطوية التالية لتساعدك على فهم التفاعل

> الخطوة ١ اطو ورقة من المنتصف بصورة رأسية.

الخطوة ٢ قص وجه الورقة العلوي في صورة أشرطة متساوية، كما في الشكل.

الخطوة ٣ عنون كل شريط.

معلومات للبحث: اكتب _ قبل أن تبدأ قراءة الفصل _ الأسئلة التي تجول في خاطرك حول التفاعل الكيميائي على الجهة الأمامية للأشرطة. وفي أثناء قراءتك للفصل اكتب أسئلة إضافية، ثم أجب عن الأسئلة التي كتبتها جميعًا أسفل الأشرطة.

لمراجعة محتوي هذا الفصل وأنشطته ارجع إلى الموقع الإلكتروني www.obeikaneducation.com

أتهيأ للقراءة

التوقع

- التوقع تخمين مدروس مبني على ما تعلمته من قبل. والطريقة الوحيدة التي ينبغي عليك اتباعها لتوظيف التوقع في أثناء قراءتك هي تخمين ما يود الكاتب إيصاله إليك. ومن خلال قراءتك للفصل ستدرك ارتباط الموضوعات بعضها ببعض مما يعزز فهمك لها.
- أندرب اقرأ النصّ أدناه من الدرس الأول، ثـمّ اكتب -بناءً على ما قرأته-توقعاتك حول ما ستقرؤه في سائر الدرس. اقرأ الدرس، ثم ارجع إلى توقعاتك؛ لترى إن كانت صحيحة أم لا.

توقع: ما الخصائص التي تؤثر فيها التغيرات الكيميائية؟

هل الانصهار تغير فيزيائي أم تغير كيميائي؟

توقع: ماذا يحدث لذرات العناصر المكونة للماء إذا تعرضت لتغيرات كيميائية؟ قد تتعرّض المادّة لنوعين من التغيرات، تغيّرات فيزيائية وتغيرات كيميائية. وتؤثر التغيرات الفيزيائية فقط، الفيزيائية فقط، ومنها الحجم والشكل وحالتها (صلبة أو سائلة أو غازية). فمثلاً عند تجمد الماء تتغيّر حالته الفيزيائية من الحالة السائلة إلى الحالة الصلبة، ولكنّه يظل ماء. صفحة ١٧٨.

والله عبد الفصل، انظر إلى أطبق قبل قراءتك هذا الفصل، انظر إلى أسئلة مراجعة الفصل، واختر ثلاثة أسئلة، وتوقّع إجاباتها.

افحص توقعاتك في أثناء قراءتك وتأكد مما إذا كانت صحيحة.

توجيه القراءة وتركيزها

ركز على الأفكار الرئيسة عند قراءتك الفصل باتباعك ما يلي:

- **قبل قراءة الفصل** أجب عن العبارات الواردة في ورقة العمل أدناه.
 - اكتب (م) إذا كنت موافقًا على العبارة.
 - اكتب (غ) إذا كنت غير موافق على العبارة.
- **الفصل** ارجع إلى هذه الصفحة لترى إن كنت قد غيّرت رأيك حول أي من هذه العبارات.
 - إذا غيرت إحدى الإجابات فبين السبب.
 - صحّح العبارات غير الصحيحة.
 - استرشد بالعبارات الصحيحة في أثناء دراستك.

بعد القراءة م أوغ	العبارة	قبل القراءة م أو غ
	١. الاحتراق مثالٌ على التغير الكيميائي.	
	 ٢. تساعدنا المعادلة الكيميائية على معرفة أسماء المواد المتفاعلة وأسماء المواد الناتجة فقط. 	
	 عندما تحترق مادة ما تختفي ذرات العناصر، وتظهر ذرات عناصر جديدة. 	
	 ٤. عند موازنة المعادلة الكيميائية يمكن تغيير الأرقام السفلية التي توجد في الصيغة الكيميائية. 	
	 عض التفاعلات طاردة للطاقة، وبعضها الآخر ماص لها. 	
	 تتكسر خلال التفاعلات الكيميائية الروابط في المواد المتفاعلة، وتنتج روابط جديدة. 	
	٧. لا تحتاج التفاعلات الطاردة للطاقة إلى أي طاقة لتبدأ.	
	٨. تزداد سرعة معظم التفاعلات الكيميائية بزيادة درجة الحرارة.	

الصيغ والمعادلات الكيميائية

فدء هذا الدرس

الأهداف

- تحدّ إن كان التفاعل الكيميائي يحدث أم لا.
- تكتب معادلة كيميائية موزونة.
- تختبر بعض التفاعلات الطاردة للطاقة وبعض التفاعلات الماصة لها.
 - توضح قانون حفظ الكتلة.

الأهمية

تُدفأ المنازل، ويُهضم الطعام، وتُشغل السيارة بفعل التفاعلات الكيميائية.

🤉 مراجعة المفردات

الذرة أصغر جزء في المادة يحتفظ بخصائص العنصر.

الهفردات الجديدة

- التفاعل الكيميائي
 - المتفاعلات
 - النواتج
- المعادلة الكيميائية
- التفاعل الماص للحرارة
- التفاعل الطارد للحرارة

التغيّر الفيزيائى والتغيّر الكيميائى

إنّ شمّ رائحة الطعام المطهو، أو رؤية دخان الحرائق دليل على حدوث تفاعل كيميائي. ربما تكون بعض الدلائل الأخرى على حدوث التفاعلات الكيميائية غير واضحة أحيانًا، إلا أن هناك إشارات تظهر لك تؤكد أن تفاعلات كيميائية تحدث.

قد تتعرّض المادّة لنوعين من التغيرات، تغيّرات فيزيائية وتغيرات كيميائية. وتؤثر التغيرات الفيزيائية فقط، ومنها الحجم والشكل وحالتها (صلبة أو سائلة أو غازية). فمثلاً عند تجمد الماء تتغيّر حالته الفيزيائية من الحالة السائلة إلى الحالة الصلبة، ولكنّه يظل ماء.

أمّا التغيّرات الكيميائية فتُنتج مادّة أخرى لها خصائص مختلفة عن خصائص المادّة الأصلية. فالصدأ الذي يظهر على المنتجات المصنوعة من الحديد له خصائص تختلف عن خصائص الحديد، كما أنّ الراسب الصلب الناتج عن مزج مادّتين سائلتين يعد مثالاً آخر على التغيرات الكيميائية.

تتفاعل نترات الفضة مع كلوريد الصوديوم، وينتج كلوريد الفضة الصلب ونترات الصوديوم السائلة. وتُسمّى العملية التي تنتج تغيرًا كيميائيًّا التفاعل الكيميائي الصوديوم السائلة. وتُسمّى العملية التي تنتج تغيرًا كيميائيًّا التفاعل الكيميائي

ولكي تقارن بين التغير الفيزيائي والتغير الكيميائي انظر إلى الصحيفة في الشكل ١، فإذا قمت بطيها فإنّك تغيّر حجمها وشكلها فقط، ولكنّها تبقى صحيفة؛ فالطي تغيّر فيزيائي. أمّا إذا أضرمت فيها النار فإنّها ستحترق، والاحتراق تغير كيميائي لأنّه أنتج مادّة جديدة، فكيف يمكنك تمييز التغير الكيميائي؟ الشكل ٢ يوضّح لك ذلك.

الشكل ١ يمكن أن يحدث للصحيفة تغير فيزيائي وتغير كيميائي.

التفاعلات الكيميائية

الشكل ٢

تحدث التفاعلات الكيميائية عندما تتحد المواد لإنتاج مواد جديدة. وتساعدك حواسك ـ وهي اللمس والبصر والتذوق والسمع والشم - على تحديد التفاعلات الكيميائية في البيئة المحيطة بك.

▲ البصر عندما تلمح حشرة مضيئة فأنت ترى تفاعلاً كيميائيًا؛ نتيجة اتحاد عناصر كيميائية داخل جسم الحشرة، ممّا أدى إلى تحرير طاقة ضوئية.

والفجوات التي تراها في قطعة الخبز دليل على تفكك السكر بواسطة خلايا الخميرة في أثناء تفاعلهما، ممّا أدّى إلى إنتاج غاز ثاني أكسيد الكربون.

▲ الشمّ واللمس السُّحب المتكاثفة ورائحة الدخان وحرارة اللهب، كل ذلك يدل على حدوث تفاعل كيميائي في هذه الغابة المحترقة.

▼ مداق انفعل الطفل عند تذوقه الحليب؛
 لأنّ مذاق الحليب يصبح لاذعًا بسبب
 التفاعل الكيميائي.

▲ السمع والبصر رائد فضاء يرفع مشعل الطوارئ بعد هبوطه في المحيط في أثناء التدريب. صوت اشتعال المشعل حدث نتيجة تفاعل كيميائي.

المعادلات الكيميائية

إذا أردت التعبير عن المعادلات الكيميائية فعليك أولاً تحديد الموادّ البادئة للتفاعل والتي تُسمّى الموادّ المتفاعلة أو المتفاعلات Reactants. أما الموادّ التي تنتج عن التفاعل فتُسمّى الموادّ الناتجة أو النواتج

فعندما تمزج الخل بمسحوق الخبز يحدث تفاعل قوي، ويمكن الاستدلال على هـذا التفاعـل من خلال الفقاقيع والرغوة التي تظهر في الإناء، كمـا تشاهـد في الشكل ٣. الخل ومسحوق الخبز أسماء شائعة لهذه المواد الكيميائية المتفاعلة في هذا التفاعل، ولهذه المواد أسماء كيميائية أيضًا، مسحوق الخبز (باكنج صودا) مركّب كيميائي يسمى كربونات الصوديوم الهيدر وجينية أو بيكربونات الصوديوم. أمّـا الخل فهو محلول حمض الأستيك في الماء. ما المقصود بالمواد الناتجة؟ لقد شاهدت تكوّن الفقاقيع أثناء حدوث التفاعل، ولكن هل هذا الوصف كافٍ لتعرّف المواد الماتجة؟

وصف ما حدث تدلّ الفقاقيع على تصاعد غاز ما، ولكنّها لا تبين نوعه فهل فقاقيع الغاز هي الناتج الوحيد للتفاعل؟ أم أنّ هناك مادّة جديدة تكوّنت نتيجة تفاعل الخل مع بيكربونات الصوديوم؟ إنّ ما يحدث في التفاعل الكيميائي أكثر بكثير ممّا تستطيع أن تراه بعينيك؛ فقد حاول الكيميائيون تحديد الموادّ التي يتفاعل بعضها مع بعض والموادّ الناتجة عن التفاعل، ثم قاموا بكتابتها في صورة رموز تُسمّى معادلة كيميائية الناتجة وخصائص كل مادّة فيها، وبعضها يخبرنا عن الحالة الفيزيائية لكلّ مادة.

العادلة الكيميائية؟ ماذا توضّح المعادلة الكيميائية؟

الشكل ٣ تدلّ الفقاقيع على حدوث تفاعل كيميائي. توقع كيف يمكنك معرفة ما إذا تكوّنت مادة جديدة؟

التفاعلات الكىمىائىة

ارجع إلى كراسة التجارب العملية

تجربة عملية

استخدام الكلمات يمكن كتابة المعادلة الكيميائية اللفظية
باستخدام أسماء الموادّ المتفاعلة والموادّ الناتجة. وتكتب
المتفاعلات عن يمين السهم، ويفصل بينها بإشارة (+). أمّا
النواتج فتكتب عن يسار السهم، ويُفصل بينها أيضًا بإشارة
(+). أمّا السهم الذي يكتب بين المتفاعلات والنواتج فيمثّل
التغيرات التي تحدث في أثناء التفاعل الكيميائي. وعندما نقرأ
المعادلة يُشار إلى السهم بكلمة ينتج.

يمكنك الآن أن تفكّر في العمليات التي تحدث من حولك

بوصفها تفاعلات كيميائية، حتى إن كنت لا تعرف أسماء المتفاعلات. وقد يساعدك الجدول اعلى التفكير كالكيميائيين؛ فهو يُبين بعض التفاعلات الكيميائية اللفظيّة التي قد تحدث في بيتك. جد تفاعلات أخرى، ولاحظ الإشارات التي تدلّ على حدوث تفاعل، ثم حاول كتابتها بالطريقة الموضحة في الجدول.

استخدام الأسماء الكيميائية كثير من الموادّ الكيميائية المستخدمة في البيوت لها أسماء شائعة؛ فحمض الأستيك المذاب في الماء مثلًا هو الخلّ. ولمسحوق الخبز اسمان كيميائيان، هما بيكربونات الصوديوم، وكربونات الصوديوم الهيدروجينية. وعمومًا تستخدم الأسماء الكيميائية في المعادلات الكيميائية اللفظيّة بدلًا من الأسماء الشائعة. فعند تفاعل الخل مع صودا الخبز تكون الموادّ المتفاعلة هي: بيكربونات الصوديوم وحمض الأستيك، والموادّ الناتجة: أستات الصوديوم والماء وثاني أكسيد الكربون. ويمكن كتابة المعادلة الكيميائية اللفظية للتفاعل كما يلى:

مض الأستيك + كربونات الصوديوم الهيدروجينية —>	>
أستات الصوديوم + ماء + ثاني أكسيد الكربون	

استخدام الصيغ الكيميائية إنّ المعادلة اللفظية لتفاعل مسحوق الخبز مع الخل طويلة. لذا استخدم الكيميائيون الصيغ الكيميائية للتعبير عن الأسماء الكيميائية للموادّ في المعادلة. ويمكنك تحويل المعادلة اللفظية إلى معادلة كيميائية رمزية باستعمال الصيغ الكيميائية بدل الأسماء الكيميائية. فعلى سبيل المثال، يمكن التعبير عن المعادلة السابقة بصيغ كيميائية كما يلي:

CH ₃ COOH +	$NaHCO_3 \rightarrow$	CH ₃ COONa	$+ H_2O$	+ CO ₂
حمض الأستيك	كربونات	أستات الصوديوم	ماء	ثاني
	الصوديوم			أكسيد
	الهيدروجينية			الكربون

الجدول ١: تفاعلات تحدث في بيتك							
نواتج		متفاعلات					
غاز + مادّة صلبة بيضاء	←	مسحوق الخبز + خل					
رماد + غاز + حرارة	←	فحم + أكسجين					
صدأ الحديد	←	حديد + أكسجين + ماء					
مادّة سوداء + غاز	←	فضة + كبريتيد الهيدروجين					
غاز + حرارة	←	غاز الطهي + أكسجين					
تحوّل لون التفاح إلى البني	←	شريحة تفاح + أكسجين					

أوراق الخريف

إنّ تغيّر الألوان دليل على التفاعل الكيميائي؛ ولعلك لم تتوقع أنّ تغيُّر ألوان أوراق الشجر في الخريف سببه تفاعل كيميائي. يكون اللونان الأصفر الفاقع والبرتقالي موجودين أصلاً في أوراق الشجر، ولكن اللون وعند انتهاء موسم النمو يتفكك الكلوروفيل بمعدل أكبر من معدل إنتاجه، فيظهر اللون الأصفر والبرتقالي على الأوراق.

تجربة

ملاحظة قانون حفظ الكتلة

الخطوات 🌃 🤝 🔊

- ضع قطعة من سلك الأواني في أنبوب اختبار متوسط الحجم، ثم ثبت فوهة بالون على فوهة الأنبوب.
- ٢. عيِّن كتلة الأنبوب بمحتوياته.
- ٣. سخّن الأنبوب في حمام مائي ساخن (يُعدّه معلمك) باستخدام ماسك الأنابيب مدة دقيقتين.
- اترك الأنبوب حتى يبرد تمامًا،
 شم جد كتلته بمحتوياته مرة
 أخرى بعد تجفيف سطحه
 الخارجي من الماء.

التحليل

- ما الذي لاحظته؟ وما الذي دلّ على حدوث تفاعل؟
- ٢. قارن بين كتل المواد المتفاعلة والناتجة.
- لماذا كان من الضروري إغلاق فوهة أنبوب الاختبار؟

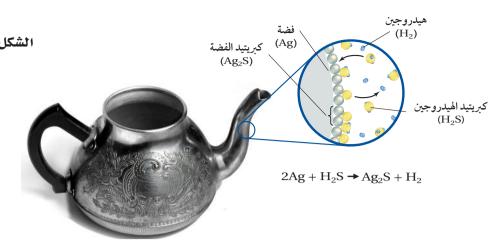
الشكل ٤ ينصّ قانون حفظ الكتلة على أنّ عدد الـذرات ونوعها يجب أن يكون متساويًّا في المتفاعلات والنواتج.

الأرقىام السفلية تعبر الأرقىام الصغيرة التي تكتب على يمين الـذرات إلى الأسفل في الصيغة الكيميائية عن عدد ذرات كل عنصر في المركّب. فعلى سبيل المثال نجد أنّ الرقم "2" في جزيء CO_2 يعني أنّ جزيء ثاني أكسيد الكربون يحتوي على ذرتين من الأكسجين. وإذا لـم يكتب بجانب ذرة العنصر رقم في الصيغة الكيميائية، فهذا يعني أنّ لذلك العنصر ذرة واحدة فقط في المركب. ولهذا فإنّ ثاني أكسيد الكربون يحتوي على ذرة كربون واحدة فقط.

حفظ الكتلة

ماذا يحدث لذرات المواد المتفاعلة عندما تتحوّل إلى مواد أخرى (نواتج)؟ وفق قانون حفظ الكتلة يجب أن تكون كتلة المواد الناتجة مساوية لكتلة المواد المتفاعلة (أو الداخلة) في التفاعل الكيميائي. هذا القانون نصّ عليه عالم الكيمياء الفرنسي أنتوني لافوزيه (١٧٤٣-١٧٩٤م)، والذي يعد أول علماء الكيمياء في العصر الحديث؛ حيث استخدم المنطق والطرائق العلميّة في دراسة التفاعلات الكيميائية. وقد أثبت لافوازيه من خلال تجاربه أنّه لا يُستحدَث شيء أو يفني في التفاعلات الكيميائية.

وقد أوضح أنّ التفاعلات الكيميائية تشبه إلى حدّ كبير المعادلات الرياضيّة التي يكون فيها الطرف الأيمن مساويًّا للطرف الأيسر. وكذلك الحال بالنسبة إلى المعادلة الكيميائية، حيث يكون عدد الذرات ونوعها في طرفي المعادلة متساويًا؛ فكل ذرة في المتفاعلات تظهر أيضًا في النواتج، كما هو موضّح في الشكل ٤. فلا تُستحدث الذرات ولا تفنى في التفاعلات الكيميائية، ولكن يعاد ترتيبها.



ثاني أكسيد الكربون + ماء + إيثانوات الصوديوم

CH₃COOH + NaHCO₃

كربونات الصوديوم الهيدروجينية + حمض الإيثانويك (الخل)

المتفاعلات

الشكل ٥ لتبقى الأواني الفضية لامعة يجب تنظيفها باستمرار، وخصوصًا في المنازل التي تستخدم الغاز في الطهي والتدفئة وغيرها من الاستخدامات المنزلية، إذ يحتوي الغاز على مركبات الكبريت، التي تتفاعل مع الفضة لتنتج كبريتيد

موازنة المعادلة الكيميائية

عندما تكتب معادلة كيميائية لتفاعل ما، عليك ألا تغفل قانون حفظ الكتلة. انظر مرة أخرى إلى الشكل ٤ الذي يبين أنّ أعداد ذرات الكربون والأكسجين والهيدروجين والصوديوم في جانبي السهم متساوية، ممّا يعني أنّ المعادلة موزونة وأنّ قانون حفظ الكتلة قد طُبق.

لا يمكن موازنة جميع المعادلات بالسهولة نفسها. انظر مثلاً إلى الفضة السوداء _ كما هو مبين في الشكل • _ الناتجة عن تفاعل الفضة مع أحد مركبات الكبريت في الهواء (كبريتيد الهيدروجين). والمعادلة غير الموزونة التالية توضح ذلك:

$$m Ag$$
 + $m H_2S$ $ightarrow$ $m Ag_2S$ + $m H_2$ $m aux$ $m aux$

حساب عدد الذرات الميدروجين والكبريت متساو في المتفاعلات والنواتج، فستجد أنّ عدد كل من ذرات الهيدروجين والكبريت متساو في الجانبين، ولكن هناك ذرة فضة في المتفاعلات بينما هناك ذرتان في النواتج، وهذا لا يمكن أن يكون صحيحًا؛ فالتفاعل الكيميائي لا يمكن أن يستحدث ذرة فضة من العدم، ولهذا فإنّ هذه المعادلة لا تمثّل التفاعل بشكل صحيح! ضع العدد 2 أمام ذرة الفضة في المتفاعلات، وتحقّق من موازنة المعادلة بحساب عدد ذرات كل عنصر.

$2Ag + H_2S \rightarrow Ag_2S + H_2$

المعادلة الآن موزونة؛ فهناك أعداد متساوية من ذرات الفضة في المتفاعلات والنواتج. وتذكر أنّنا عندما نوازن المعادلة الكيميائية، توضع الأرقام قبل الصيغ كما فعلت لذرة الفضة، وهو ما يعرف بالمُعامل. ويجب ألا تغير الأرقام السفلية المكتوبة عن يمين الذّرات في صيغة المركب الكيميائية؛ فتغييرها يغير نوع المركّب.

المعادلة الكيميائية

ارجع إلى المواقع الإلكترونية عبر شبكة الإنترنت أو أية مواقع أخرى مناسبة للبحث عن معلومات حول المعادلات الكيميائية وكيفية موازنتها.

نشاط صف تفاعلاً كيميائيًّا يحدث في منزلك أو مدرستك، واكتب المعادلة الكيميائية التي تعبر عنه.

الطاقة في التفاعلات الكيميائية

غالبًا ما يصاحب التفاعلات الكيميائية تحرر (طرد) طاقة أو امتصاصها؛ فالطاقة الصادرة من شعلة اللحام ـ كما في الشكل ٦ ـ تتحرّر عند اتحاد الهيدروجين والأكسجين لإنتاج الماء.

$$2H_2 + O_2 \rightarrow 2H_2O + d$$
طاقة

تحرّر الطاقة من أين تأتي هذه الطاقة؟ للإجابة عن هذا التساؤل، فكّر في الروابط الكيميائية التي يتم كسرها أو تكوّنها عندما تكسب الذرات الإلكترونات أو تفقدها أو تتشارك بها. وفي مثل هذه التفاعلات تتكسر الروابط في المتفاعلات لتنشأ روابط جديدة في النواتج. وفي التفاعلات التي تحرّر طاقة تكون النواتج أكثر استقرارًا، كما يكون لروابطها طاقة أقل من المتفاعلات، وتتحرّر الطاقة الزائدة في أشكال مختلفة، منها الضوء والصوت والطاقة الحرارية.

وزن المعادلة

تطبيق الرياضيات

حفظ الكتلة يتفاعل الميثان (وهو غاز يستخدم وقود) مع الأكسجين لتكوين ثاني أكسيد الكربون والماء. يمكنك التحقّق من قانون حفظ الكتلة بموازنة المعادلة التالية:

$$CH_4 + O_2 \rightarrow CO_2 + H_2O$$

الحلّ:

أعداد ذرات كل من O، H، O في المتفاعلات والنواتج.

1 المعطيات

تأكد من تساوي أعداد الذرات في المتفاعلات والنواتج، وابدأ بالمتفاعلات التي فيها أكبر عدد من العناصر المختلفة.

٢ المطلوب

الإجراء	النواتج	المتفاعلات
تحتـاج إلى ذرتين H في النواتج،	$CO_2 + H_2O$	$CH_4 + O_2$
اضـرب $ m H_2O$ فــي 2 لـتـعــطي $ m 3$ ذرات $ m H$.	لها ذرتا هيدروجين	لها ٤ ذرات هيدروجين
تحتاج إلى ذرتين 0 في	$CO_2 + 2H_2O$	$CH_4 + O_2$

 $CO_2 + 2II_2O$ المتفاعـ لات اضـرب O_2 في O_2 \$ ذرات أكسجين لها ذرتا أكسجين لتعطى O_2 ذرات O_3 لتعطى O_3 ذرات O_3 درات O_3 درات

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$:وتصبح المعادلة الموزونة

التحقّق من الحل احسب عدد ذرات الكربون والهيدروجين والأكسجين في كلا الجانبين.

مسائل تدريبية

 $\mathrm{Fe_2O_3} + \mathrm{CO} \rightarrow \mathrm{Fe_3O_4} + \mathrm{CO_2}$: زن المعادلة التالية.

 $Al + I_2 \rightarrow AlI_3$: زن المعادلة التالية . ۲

لمراجعة التدريبات ارجع إلى الموقع الإلكتروني

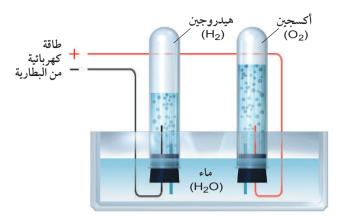
العلـــوم ﴿ عبر المواقع الإلكترونية

هناك الكثير من أنواع التفاعلات التي تحرّر طاقة حرارية. فالاحتراق مثلًا تفاعل طارد للحرارة، حيث تتحد المادّة مع الأكسجين لإنتاج طاقة حرارية، بالإضافة إلى ضوء وثاني أكسيد الكربون وماء.

الى أيّ أنواع التفاعلات الكيميائية ينتمى الاحتراق؟

تحرير سريع تتحرّر الطاقة سريعًا في بعض الأحيان، ففي ولاّعة الفحم النباتي مثلًا يتحد السائل مع أكسجين الهواء الجوي، وينتج طاقة حرارية كافية لإشعال الفحم النباتي في دقائق معدودة.

الشكل ٦ يحرق مشعل اللحام الهيدروجين والأكسجين لإنتاج حرارة أعلى من ٣٠٠٠ °س، حتى أنّها تستخدم تحت الماء.


حدّد نواتج هذا التفاعل الكيميائي.

تحرير بطيء هناك مواد أخرى تتحد مع الأكسجين أيضًا، ولكنها تطلق طاقة حرارية ببطء، بحيث لا يمكننا رؤيتها أو حتى الإحساس بها. فمثلاً عندما يتحد الحديد مع الأكسجين في الهواء الجوي ليكون الصدأ يُطلق طاقة حرارية بشكل بطيء. ويمكن استخدام الإطلاق البطيء للحرارة في الكمادات الحارة التي تستخدم في تدفئة بعض أجزاء الجسم لعدة ساعات. ويوضح الشكل ٧ الفرق بين التحرير السريع للطاقة الحرارية والتحرير البطيء.

الشكل ٧ مثالان على تفاعلات طاردة للحرارة: الفحم النباتي المشتعل بدأ عندما اتحد سائل الولاعة بسرعة مع أكسجين الهواء، وحديد العربة اليدوية اتحد ببطء مع الأكسجين ليكون الصدأ.

امتصاص الطاقة ولكن ماذا يحدث عند عكس التفاعل؟ في التفاعلات التي يتم فيها امتصاص الطاقة تكون المتفاعلات أكثر استقرارًا من النواتج، ويكون للروابط التي بين النواتج.

$$2 H_2 O$$
 + طاقة \rightarrow $2 H_2$ + O_2 أكسجين هيدروجين ماء

الشكل ٨ نحتاج إلى الطاقة الكهربائية لكسر جزيئات الماء. وهذا هو التفاعل العكسي للتفاعل الذي يحدث في مشعل اللّحام الموضّح في الشكل ٦.

ونلاحظ في التفاعل أعلاه أنّ الطاقة الإضافية المطلوب تزويد المتفاعلات بها لتكوين النواتج يمكن أن تكون في صورة كهرباء، كما في الشكل ٨.

للطاقة (المتحررة أو الممتصة) المصاحبة للتفاعلات الكيميائية أشكال متعددة؛ فمنها الطاقة الكهربائية والضوئية والصوتية والحرارية. وعندما تُفقد أو تُكتسب طاقة حرارية في التفاعلات نستخدم مصطلحات معينة للدلالة عليها، منها تفاعل ماص للحرارة Endothermic تمتص خلاله الطاقة الحرارية، أو تفاعل طارد للحرارة تخدر خلاله الطاقة الحرارية. إنّ كلمة (therm) تعني حرارة، ومنها الترمس (Thermometer) حافظة الحرارة، ومقياس الحرارة الترمومتر (Thermometer).

تحتاج بعض التفاعلات الكيميائية وبعض العمليات الفيزيائية إلى طاقة حرارية قبل حدوثها. وتعد الكمادات الباردة التي توضع على مكان الألم مثالًا على العمليات الفيزيائية الماصة للحرارة، كما هو موضّح في الشكل ٩.

يوجد داخل هذه الكمادات ماء تنغمر فيه حافظة تحوي مادة نترات الأمونيوم، وعند تهشم هذه الحافظة تذوب نترات الأمونيوم في الماء، مما يؤدي إلى امتصاص حرارة من البيئة المحيطة (الهواء أو جلد الشخص المصاب) بعد وضع الكمادة على مكان الإصابة.

الشكل ٩ الطاقة الحرارية اللازمة للدوبان نترات الأمونيا في كيس الكمادات الباردة تأتي من البيئة المحيطة. استنج كيف تعمل الكمادات الباردة على تخفيض درجة حرارة عضو مصاب في الجسم؟

الطاقة في المعادلة الكيميائية تكتب كلمة (طاقة) في المعادلة الكيميائية مع المتفاعلات أو النواتج. فإذا كتبت كلمة طاقة مع المواد المتفاعلة دل ذلك على أنها مكون ضروري في حدوث التفاعل؛ فنحن نحتاج إلى الطاقة الكهربائية على سبيل المثال لكسر جزيئات الماء إلى هيدروجين وأكسجين. لذا من المهم أن تعرف أن الطاقة ضرورية لحدوث هذا التفاعل.

كما تُكتب في المعادلات الكيميائية الطاردة للحرارة كلمة (طاقة) مع النواتج؛ لتدلّ على تحرر الطاقة. وتضاف كلمة (طاقة) مثلاً في التفاعل الذي يحدث بين الأكسجين والميثان عند اشتعال لهب الموقد، كما هو موضّح في الشكل ١٠.

$${
m CH_4} \ + \ 2{
m O_2} \ o \ {
m CO_2} \ + \ 2{
m H_2O} \ + \$$
 ميثان ميثان ميثان ماء للكربون الكربون

الشكل ١٠ تستخدم الطاقة الناتجة عن التفاعل الكيميائي في طهي الطعام.

حدّد ما إذا كانت الطاقة من المتفاعلات أو تدخل ضمن نواتج في هذا التفاعل.

مراجعة الدرس

الخلاصة

تغيرات فيزيائية أم كيميائية؟

- تتعرّض المادة لتغيرات فيزيائية أو كيميائية.
- تُنتج التفاعلات الكيميائية تغيرات كيميائية.

المعادلة الكيميائية

- و تصف المعادلة الكيميائية التفاعل الكيميائي.
- تعبر الصيغ الكيميائية عن الأسماء الكيميائية للمواد.
- أعداد الذرات في المعادلة الكيميائية الموزونة متساوية في طرفي المعادلة.

الطاقة في المعادلة الكيميائية

- التفاعلات الماصة للطاقة Endothermic تمتص طاقة حرارية.
- التفاعلات الطاردة للطاقة Exothermic يتحرر منها طاقة حرارية.

اختبر نفسك

1. حدّ ما إذا كانت المعادلات الكيميائية التالية موزونة أم لا، ولماذا؟

$$Ca + Cl_2 \rightarrow CaCl_2$$
 .

$$Zn + Ag_2S \rightarrow ZnS + Ag$$
 . $\dot{\gamma}$

- على أن تفاعلاً كيميائيًا قد حدث.
- ٣. التفكيرالناقد يكون الرماد الذي تخلفه حرائق الغابات أقل كتلة، ويشغل حيزًا أصغر مقارنة بالأشجار والنباتات قبل احتراقها، فكيف يمكن تفسير ذلك وفق قانون حفظ الكتلة؟

تطبيق المهارات

٤. زن المعادلة الكيميائية التالية:

Ag $_2{\rm O} \rightarrow {\rm Ag} + {\rm O}$ $_2$

العلـــوم، 🍑 يبر المواقع الإلكترونية لزيد من الاختبارات القصيرة ارجع إلى الموقع الإلكتروني:www.obeikaneducation.com

سرعة التفاعلات الكيميائية

فيء هذا الدرس

الأهداف

- تصف سرعة التفاعل الكيميائي، وتحدد كيفية قياسها.
- تعرف كيف تُسرِّع أو تبطئ التفاعلات الكيميائية.

الأهمية

من المفيد أحيانًا تسريع التفاعلات البناءة المرغوب فيها، وإبطاء التفاعلات الهدّامة غير المرغوب فيها.

🤉 مراجعة المفردات

حالة المادة: خاصية فيزيائية تعتمد على درجة الحرارة والضغط، وتظهر بأربعة أشكال: صلبة، وسائلة، وغازية، ويلازما.

المفردات الجديدة

- طاقة التنشيط
- سرعة التفاعل
 - التركيز
 - المثبطات
- عامل مساعد محفز
 - الإنزيات

تفاوت السرعة

تنفجر الألعاب النارية سريعًا، بينما تتغير ألوان التحف النحاسية القديمة إلى اللون الأسود ببطء، وتختلف صلابة صفار البيض عند طهيه مدة دقيقتين عن طهيه خمس دقائق، ويجب أن نحدّ دبدقة المدة اللازمة لوضع صبغة الشعر الملونة على الشعر لنحصل على اللون الذي نريده. تلاحظ من الأمثلة السابقة أنّ التفاعلات الكيميائية شائعة في حياتك، وكيف أن الزمن عامل مؤثر فيها. ويوضح الشكل ١١، أنّ التفاعلات الكيميائية لا تحدث جميعها بالسرعة نفسها.

ليست كل التفاعلات الكيميائية تحدث تلقائيًّا؛ فبعض التفاعلات تحدث -كما هو ملاحظ في الحياة اليومية - بشكل غير تلقائي، ومنها التفاعلات التي تحدث في الألعاب النارية، وإشعال الحطب أو الفحم. وفي المقابل نجد أن هناك تفاعلات أخرى تحدث تلقائيًّا دون تدخل منك. وستتعرّف في هذا الدرس العوامل التي تسرّع التفاعلات الكيميائية أو تبطئها.

الشكل ١١ تختلف سرعة التفاعلات الكيميائية كثيرًا؛ فالألعاب النارية مثلاً تنفجر في ثوان، بينما يتغير لون طلاء الوعاء النحاسي إلى اللون الأسود بسرعة بطيئة جدًّا.

طاقة التنشيط – بدء التفاعل

يلزم أن تتصادم جزيئات المواد المتفاعلة بعضها ببعض قبل أن يبدأ التفاعل. ويبدو هـذا الشرط منطقيًا؛ لأن تكوين روابط كيميائية جديدة يتطلب أن تكون الذرات قريبة بعضها من بعض. بل ينبغي أيضًا أن يكون التصادم بين الجزيئات قويًّا بدرجة كافية وبطاقة محددة وإلا فلن يحدث التفاعل. لكن لماذا مثل هذا الشرط؟

لتكوين روابط جديدة في النواتج يجب كسر الروابط الكيميائية في المتفاعلات. ولما كان تكسير الروابط الكيميائية يحتاج إلى طاقة محددة، فإنه يجب توافر قدر معين (حد أدنى) من الطاقة حتى يبدأ أي تفاعل كيميائي، وتسمى هذه الطاقة طاقة تنشيط Activation energy التفاعل.

ما المصطلح الذي يُعبّر عن الحد الأدنى من الطاقة التي تلزم البدء التفاعل؟

ماذا عن التفاعلات الطاردة للطاقة؟ هل هناك طاقة تنشيط لهذه التفاعلات أيضًا؟ نعم، على الرغم من أنّ هذه التفاعلات تحرّر طاقة إلا أنّها تحتاج أيضًا إلى طاقة لتبدأ. ويعد احتراق الجازولين مثالًا على التفاعلات التي تحتاج إلى طاقة لتبدأ؛ فإذا انسكب بعض الوقود من غير قصد عند تعبئة خزان الوقود يتبخر هذا الوقود في وقت قصير، ولكنه لا يشتعل. تُرى ما السبب في ذلك؟ السبب هو أنّ الوقود يحتاج إلى طاقة لكي يبدأ الاحتراق. ولهذا نجد في محطات الوقود لوحات تمنع التدخين، وتلزم السائق بإطفاء محرّك السيارة، وعدم استعمال أجهزة الجوال.

ومن الأمثلة على ذلك أيضًا الشعلة الأولمبية المستخدمة في كل دورة من دورات الألعاب الأولمبية، انظر الشكل ٢١؛ إذ يحتوي الموقد الخاص بالألعاب الأولمبية على مواد شديدة الاشتعال لا تنطفى، بفعل الرياح الشديدة أو الأمطار، ومع ذلك فإن هذه المواد لا تشتعل من تلقاء نفسها.

الشعلة الأولمبية

ارجع إلى المواقع الإلكترونية عبر شكة الإنترنت

للبحث عن معلومات حول الشعلة الأولمبية.

نشاط في كلّ دورة ألعاب أولمبية تقوم الدولة المضيفة بوضع شعلة جديدة للأولمبياد. دوّن مراحل إنتاج هذه الشعلة، ونوع الوقود المستخدم فيها.

الشكل ۱۲ يحتاج معظم أنواع الوقود إلى طاقة لكي يشتعل، وشعلة الألعاب الأولمبية تُزوّد الوقود في الموقد بالطاقة اللازمة لإشعاله.

الشكل ١٣ كمية الشمع المنصهر على أطراف هذه الشمعة يعطي فكرة عن سرعة التفاعل.

سرعة التفاعل

تُقاس الكثير من العمليات الفيزيائية بمعيار السرعة، الذي يشير إلى مدى التغير الحاصل لشيء ما في فترة زمنية محدّدة، فعلى سبيل المثال، تُقاس سرعتك وأنت تجري أو تركب دراجتك الهوائية بمقدار المسافة التي تقطعها مقسومة على الزمن الذي تستغرقه لقطع تلك المسافة.

وللتفاعل الكيميائي سرعة أيضًا، وهي تشير إلى مدى سرعة حدوث التفاعل منذ بدئه. ولإيجاد سرعة التفاعل التفاعل Rate of reaction عليك أن تجد سرعة استهالاك أحد المتفاعلات، أو سرعة تكوُّن أحد النواتج، انظر الشكل ١٣؛ ولاحظ أن كلا القياسين يدل على كمية التغير الحاصل للمادة خلال فترة زمنية محددة.

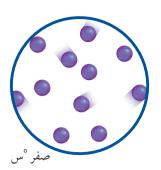
ما الذي يمكنك قياسه لتحديد سرعة التفاعل؟

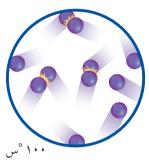
نجد أحيانًا أن سرعة التفاعل ضرورية جدًّا في بعض الصناعات؛ لأنَّه كلّما كان تكون تكون المنتج أسرع كانت التكلفة أقل، وعلى أيّ حال، فإنّ سرعة التفاعل تكون أحيانًا غير مرغوبة، ومنها التفاعل الذي يؤدي إلى فساد الفواكه، فكلّما كان التفاعل بطيئًا كانت الفواكه صالحة للأكل فترة أطول، فما الظروف التي تتحكّم في سرعة التفاعل؟ وكيف يمكن لسرعة التفاعل أن تتغير؟

الحرارة تُغير السرعة يمكنك إبطاء عملية فساد الفاكهة بوضعها في الثلاجة، كما ترى في الشكل ١٤. ففساد الفاكهة ينتج عن سلسلة من التفاعلات الكيميائية، ولكن خفض درجات حرارة الفواكه يُبطّئ من سرعة التفاعلات.

الشكل ١٤ تُقطف الطماطم أحيانًا خضراء اللون ثم تحفظ في الثلاجة لكي تكون طازجة عند تسليمها لمحالً الخضار.

الرحوم مع الصحة

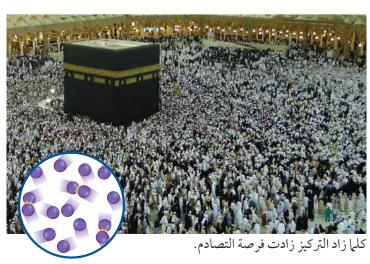

تتحلل اللحوم والأسماك بسرعة أكبر بارتفاع درجات الحرارة منتجة بذلك مواد سامة تؤدي إلى

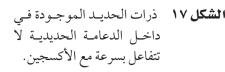

الإصابة بالأمراض عند تناولها. ويمكن إبطاء عملية تحلل المواد الغذائية بحفظها في أماكن باردة كالثلاجات. كما أن البكتيريا تنمو وتتكاثر أسرع بارتفاع درجة الحرارة . ويحتوي البيض على مثل هذه البكتيريا، غير أن حرارة الطهي المرتفعة تقتلها، ولذلك فالبيض المسلوق أو المطهو جيدًا أكثر أمانًا من البيض غير المطهو حدًا.

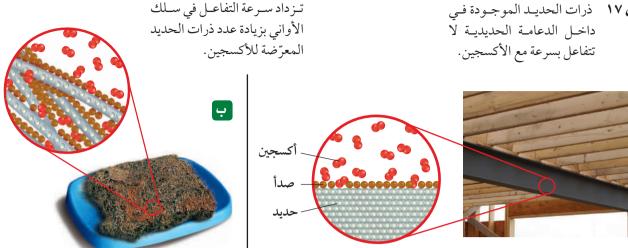
أشر درجات الحرارة في سرعة التفاعل تزداد سرعة معظم التفاعلات الكيميائية بارتفاع درجات الحرارة؛ ويرجع السبب في ذلك إلى أنَّ الجزيئات والخرات في حركة مستمرة، وتزداد سرعتها بارتفاع درجات الحرارة، كما هو موضّح في الشكل ١٥. إنَّ الجزيئات السريعة يصطدم بعضها ببعض مرات أكبر وبطاقة أكبر من الجزيئات البطيئة، ولذلك توفر هذه التصادمات ما يكفي من الطاقة لكسر الروابط، وهو ما يدعى طاقة التنشيط.

تعمل درجة الحرارة المرتفعة داخل الفرن على تسريع التفاعلات الكيميائية التي تؤدي إلى إنضاج العجين وتحويله إلى كعكة اسفنجية متماسكة صلبة. وفي المقابل يؤدي انخفاض درجة الحرارة إلى تقليل سرعة الكثير من التفاعلات. فإذا خفضت درجة حرارة الفرن فإنّ الكعكة لن تنضج بصورة جيدة.

أشر التركيز في سرعة التفاعل كلّما كانت ذرات عناصر الموادّ المتفاعلة وجزيئاتها قريبة بعضها من بعض كانت فرص التصادم بينها أكبر، فتكون سرعة التفاعل أكبر. انظر الشكل ١٦. ويشبه ذلك ما يحدث للناس في الأماكن




الشكل ١٥ تكون تصادمات الجزيئات في درجات الحرارة المرتفعة أكثر منها في درجات الحرارة المنخفضة.


سرعة التفاعل ودرجة الحرارة اربع إلى كراسة التبارب العملية

الشكل ١٦ يتصادم الناس بعضهم ببعض غالبًا في الازدحامات، وكذلك يحدث للجزيئات.

تحديد المثبطات

الخطوات

- ١. انظر إلى محتويات علب رقائق الذرة وعلب البسكويت.
- ٢. اكتب قائمة بالموادّ الحافظة المدرجة على العلبة، فهذه الموادّ المثبطة للتفاعل.
- ٣. قارن بين تاريخ انتهائها وتاريخ إنتاجها لتقدّر مدّة صلاحيتها.

التحليل

- ١. ما مدة صلاحية هذه الموادّ؟
- ٢. لماذا يكون من الضروري إطالة مدّة صلاحية مثل هذه الموادّ؟

المزدحمة جدًّا؛ حيث يزداد احتمال اصطدام بعضهم ببعض مقارنةً بالأماكن غير المز دحمة. وتُسمّى كمية المادة الموجودة في حجم معين تركيز Concentration المادة. وكلّما زاد التركيز زاد عدد جسيمات المادة في وحدة الحجم.

أثر مساحة السطح في سرعة التفاعل تؤثر مساحة سطح المادة المتفاعلة المكشوفة أيضًا في سرعة حدوث التفاعل. وهو ما نلاحظه في رحلاتنا إلى البر عند إشعالنا النار؛ فنحن نبدأ بإشعال الأغصان الرفيعة الجافة أو القطع الصغيرة من الخشب لأن إشعالها أسهل من إشعال قطع الخشب الكبيرة.

إِنَّ الـذرات أو الجزيئات التي تكون في الطبقة الخارجية للمادة المتفاعلة هي وحدها القادرة على لمس الموادّ المتفاعلة الأخرى والتفاعل معها. يبين الشكل ١٧ - أكيف أنَّ معظم ذرات الحديد تكون في الداخل ولا تتفاعل، بينما يُبين الشكل ١٧ - ب أنّ الكثير من ذرات المتفاعلات مكشوفة لذرات الأكسجين، ويمكن أن تتفاعل معها.

إبطاء التفاعلات

تحدث التفاعلات في بعض الأحيان بسرعة كبيرة، كالطعام والدواء اللذين يتعرضان للتلف أو فقدان فاعليتهما بسرعة كبيرة بسبب التفاعلات الكيميائية، ولكن لحسن الحظ أن هذه التفاعلات يمكن إبطاؤها باستخدام المثبطات.

المثبطات Inhibitor مواد تؤدي إلى إبطاء التفاعل الكيميائي، أي أنّها تجعل عملية تكوّن كمية محدّدة من المادة الناتجة تأخذ وقتًا أطول، وقد يؤدي بعضها إلى توقف التفاعل تمامًا. فمثلًا يحتوي الكثير من الموادّ الغذائية -منها رقائق

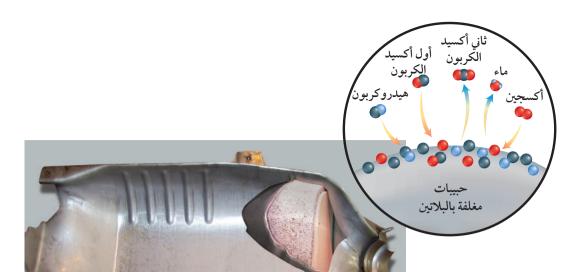
الشكل ١٨ يوجد المثبط (BHT) في الكثير من رقائق الذرة.

الذرة - على مركبات هيدروكسي تولوين (BHT)، وهو يؤدي إلى إبطاء فساد الموادّ الغذائية، وإلى إطالة مدّة صلاحيتها. انظر الشكل ١٨.

تسريع التفاعلات

هل من الممكن تسريع التفاعل الكيميائي؟ نعم، بإضافة عامل مساعد (محفز) Catalyst، وهو عبارة عن مادة تسرّع التفاعل الكيميائي، ولا يظهر في المعادلة الكيميائية، لأنّه لا يتغير ولا يُستهلك. لذا فإنّ التفاعلات التي يُستخدم فيها العامل المساعد أسرع من التفاعلات التي ليس فيها عامل مساعد. أمّا النواتج وكمياتها فستكون هي نفسها في التفاعلين.

٧ ماذا قرأت؟ ما دور العامل المساعد في التفاعل الكيميائي؟


كيف تعمل العوامل المساعدة (المحفزات)؟ تعمل بعض العوامل المساعدة على توفير سطح مناسب يساعد المواد المتفاعلة على الالتقاء والتصادم؛ مما يزيد من سرعة التفاعل. في حين نجد البعض الآخر يزيد من سرعة التفاعل من خلال تخفيض طاقة التنشيط اللازمة لبدء التفاعل.

العوامل المحفرة المحوّلة تُستخدم المحفرات في عوادم السيارات والشاحنات لتساعد على اكتمال احتراق الوقود، فالعادم يمرّ من خلال المحفز الذي يكون على هيئة حبيبات مغلّفة بفلز كالبلاتينيوم أو الروديوم، وتعمل المحفزات على تسريع الاحتراق غير المكتمل للموادّ الضارة مثل أول أكسيد

التنفس الصحي

في إطار اهتمامها بحماية الهواء من التلوث، تطالب الكثير من الدول المتقدمة والنامية بخفض الانبعاثات الصادرة عن عوادم السيارات من الهيدروكربونات وأول أكسيد الكربون، وقد احتاج صانعو السيارات إلى تطوير تقنية جديدة تتوافق مع هذه المعايير، فأدت جهودهم إلى البدء في إنتاج المحفزات المحوّلة.

الشكل ١٩ تساعد المحفزات المحوّلة على إتمام عملية احتراق الوقود. فتمر غازات العادم الساخنة على سطح الحبيات المغلفة بالفلز، فتتحول الهيدروكربونات وأول أكسيد الكربون والماء.

الكربون ليحولها إلى مواد أقل ضررًا كثاني أكسيد الكربون. وبالمثل تتحوّل الهيدروكربونات إلى ثاني أكسيد الكربون وماء. والهدف من هذه التفاعلات هو تنقية الهواء، كما في الشكل ١٩.

الإنزيمات المتخصصة للمحفزات النشطة أهمية كبيرة في آلاف التفاعلات التي تحدث في جسم الإنسان. وتُسمّى هذه المحفزات الإنزيمات Enzymes . وهي جزيئات من البروتينات الكبيرة تسرّع التفاعلات اللازمة لكي تعمل خلايا جسمك بشكل صحيح. وهي تساعد الجسم أيضًا على تحويل الطعام إلى طاقة، وبناء أنسجة العظام والعضلات، وتحويل الطاقة الزائدة إلى دهون، وإنتاج إنزيمات أخرى.

تكون سرعة هذه التفاعلات المعقدة بطيئة جدًّا وبدون هذه الإنزيمات قد لا تحدث على الإطلاق، فالإنزيمات تمكّن الجسم من القيام بأعماله الحيوية، كما أنّ الإنزيمات -كباقي المحفزات- تساعد الجزيئات على التفاعل، إلا أن الإنزيمات متخصصة؛ فلكل نوع من التفاعلات التي تحدث في الجسم إنزيمٌ خاص به.

الستخدامات أخرى وتعمل الإنزيمات خارج الجسم أيضًا، ومنها الإنزيمات البروتينية المتخصصة في تفاعلات البروتين؛ فهي تكسر جزيئات البروتينات الكبيرة المعقدة. ، فمُطرِّي اللحوم الموضّح في الشكل ٢٠ مثلاً يحتوي على إنزيمات بروتينية تعمل على كسر البروتين في اللحوم، وتجعلها طرية أكثر. كما أنّها موجودة أيضًا في محلول تنظيف العدسات اللاصقة، إذ تعمل على كسر جزيئات البروتين التي تفرزها العين، والتي تتجمع على العدسات اللاصقة وتجعل الرؤية ضبابية.

الشكل ٢٠ تعمل الإنزيمات الموجودة في مُطرِّي اللحوم على كسر البروتينات، فتجعلها طرية أكثر.

مراجعة ٢ الدرس

اختبر نفسك

- ١. صف كيف تقاس سرعة التفاعل؟
- 7. فَسَر فِي هذه المعادلة العامة: C o dاقة A+B+ كيف يمكن أن يؤثر كل مما يلي في سرعة التفاعل؟
 - أ. زيادة درجة الحرارة.
 - ب. تقليل تركيز المتفاعلات.
- ٣. صف كيف تعمل المحفزات على زيادة سرعة التفاعل؟
- التفكيرالناقد فسر لماذا يمكن تخزين علب صلصة المعكرونة لأسابيع على الرّف إن كانت مغلقة، بينها يجب حفظها في الثلاجة مباشرة بعد فتحها.

تطبيق الرياضيات

٥. حلّ المعادلة بخطوة واحدة تنتج مادة عن تفاعل كيميائي بمعدل ٢ جم كلّ ٤٥ ثانية، ما الوقت الذي يلزم لينتج هذا التفاعل ٥٠ جم من المادة نفسها؟

الخلاصة

التفاعلات الكيميائية

- لكي تتكون روابط جديدة في النواتج يجب كسر
 الروابط في المتفاعلات، وهذا يتطلب طاقة.
- طاقة التنشيط هي أقل كمية من الطاقة المطلوبة لبدء التفاعل.

سرعة التفاعل

- تدل سرعة استهلاك المتفاعلات أو سرعة تكون
 النواتج على سرعة التفاعل.
- تؤثر درجة الحرارة والتركيز ومساحة السطح
 في سرعة التفاعل.

المثبطات والمحفزات

- تُبطّئ المثبطات من سرعة التفاعل، بينما تزيد المحفزات سرعة التفاعل.
- الإنزيمات محفزات تزيد أو تقلل من سرعة التفاعل في خلايا جسمك.

العلوم عبر المواقع الإلكترونية لزيد من الاختبارات القصيرة ارجع إلى الموقع الإلكتروني: www.obeikaneducation.com

استقطاء هن واقع قليمار

صمم بنفسك

تفاعلات طاردة للحرارة أو ماصة لها

الأهداف

- تصمّم نشاطًا لتختبر ما إذا كان التفاعل الكيميائي طاردًا، أم ماصًّا للطاقة.
- تقيس التغير في درجات الحرارة الناتج عن التفاعل الكيميائي.

المواد والأدوات

- أنابيب اختبار (عدد ٨)
 - حامل أنابيب اختبار
- محلول فوق أكسيد الهيدروجين (٣٪)
 - كبد دجاج نيّ
 - بطاطس
 - مقياس حرارة
- ساعة إيقاف، وساعة ذات عقرب ثوان
 - مخبار مدرّج سعته ٥٢ مل

إجراءات السلامة

تحذير: قد يسبب فوق أكسيد الهيدروجين تهيجًا للجلد والعيون، وقد يُتلف الملابس.اتبع إرشادات المعلم عند التخلص من الموادّ الكيميائية، واغسل يديك جيدًا بعد الانتهاء من تنفيذ هذا النشاط.

🔵 سؤال منواقع الحياة-

تكون الطاقة دائمًا جزءًا من التفاعلات الكيميائية؛ فبعض التفاعلات تحتاج إلى الطاقة حتى تستمر، وبعضها تنتج عنه طاقة تنطلق إلى الوسط المحيط. وفي هذا الاستقصاء ستدرس تفاعل فوق أكسيد الهيدروجين مع كلّ من الكبد والبطاطس، وتبحث فيما إذا كان التفاعل طاردًا ام ماصًّا للطاقة.

🔵 تکوین فرضیة –

ضع فرضية تصف فيها كيف يمكنك تحديد ما إذا كان التفاعل بين فوق أكسيد الهيدروجين، وكلّ من الكبد أو البطاطس طاردًا للحرارة أم ماصًّا لها.

🚺 اختبار الفرضية

تصميم خطة

- المواد والأدوات المتوافرة لديك، وقرر الإجراءات التي ستنفذها مع مجموعتك لاختبار فرضيتك، والقياسات التي ستجريها.
- قرر كيف يمكنك الكشف عن الحرارة المنبعثة إلى الوسط الخارجي في أثناء التفاعل الكيميائي، ثمّ حدّد عدد القياسات التي ستحتاج إليها في أثناء التفاعل.
- ٢. كرِّر تنفيذ النشاط أكثر من مرة لتحصل على بيانات أكثر دقة، ثم خذ متوسط
 المحاولات جميعها؛ لكي تدعم فرضيتك.
 - قرر ما العوامل المتغيرة في تجربتك؟ وما العامل الضابط فيها؟
- انسخ جدول البيانات (الوارد في الصفحة المقابلة) في دفتر العلوم قبل تنفيذ النشاط.

استخدام الطرائق العلمية

تنفيذ الخطة

- ١. تأكد من موافقة معلمك على خطة عملك قبل تنفيذها.
 - ٢. نفذ خطة العمل.
 - ٣. **دوّن** قياساتك مباشرة في جدول البيانات.
- احسب متوسط نتائج محاولاتك، وسجلها في دفتر العلوم.

🚫 تحليل البيانات

- ١. هل يمكن أن تستدل على حدوث التفاعل الكيميائي؟ ما الأدلة التي تدعم ذلك؟
 - حدد العوامل المتغيرة في التجربة.
 - ٣. حدّد العامل الضابط في التجربة.

🔕 الاستنتاج والتطبيق

- . هل ملاحظاتك التي جمعتها تجعلك قادرًا على أن تميز بين التفاعل الطارد للحرارة والتفاعل الماص للحرارة؟ استعن ببياناتك لتوضيح إجابتك.
- ٢. تُرَى، ما مصدر الطاقة في هذه التجربة؟ وضّح إجابتك.

رة بعد إضافة	درجة الحرا	رارة بعد إضافة		
لاطس	البح	الكبد	ı	
بعددقيقة	البداية بعددقيقة		البداية	
				١
				۲
				٣

درجة الحرارة بعد إضافة الكبد / البطاطس

تــولامـــل

ببياناتك

قارن بين نتائجك ونتائج زملائك، وهل هناك اختلاف بين نتائجك ونتائجهم؟ وضّع سبب حدوث هذه الاختلافات؟

العلم والتاريخ

الألماس المصنع

ألماس حقيقي كأنه حقيقي ألماس مصنع

يُعَدُّ الألماس من أكثر الأشياء القيّمة والباهرة، والشيء الغريب أنَّ هذه المادّة الجميلة مكوّنة من الكربون الذي يكوّن الجرافيت الذي نجده في أقلام الرصاص. فما سبب أن الألماس صلب وشفاف بينما الجرافيت ليّن وأسود؟ تعود صلابة الألماس إلى قوة ترابط ذراته. أما شفافيته فتعود إلى طريقة ترتيب بلوراته، فالكربون الذي في الألماس تقريبًا نقى مع وجود آثار بسيطة جدًّا من البورون والنيتروجين، وتعطي هذه العناصر الألماس

ويُعتبر الألماس أقسى المواد الموجودة على الأرض، لدرجة أنّه لا يخدشه إلا الألماس نفسه، كما أنّه مقاوم للحرارة والكيماويات المنزلية.

يتكون الألماس عند تعرّض الكربون للضغط العالي والحرارة المرتفعة على عمق ١٥٠ كم من سطح الأرض، إذ تصل درجة الحرارة عند هذا العمق ٠٠٠ ١٤٠٠ س تقريبًا، ويكون الضغط ٠٠٠ ٥٥ مرة أكثر من الضغط عند سطح البحر.

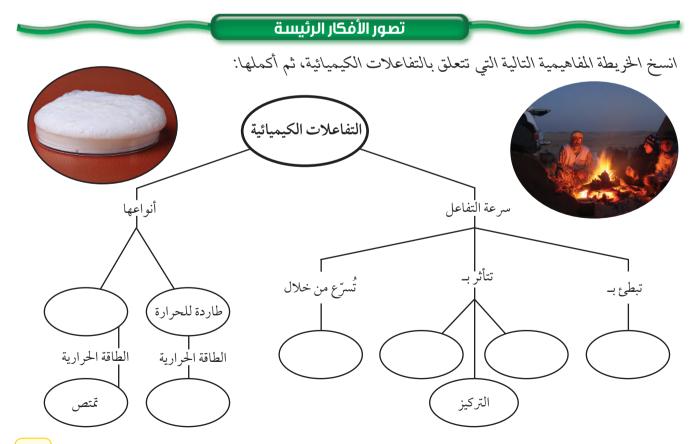
حاول العلماء في بداية عام ١٨٥٠م تحويل الجرافيت

إلى ألماس، ولم ينجحوا في ذلك إلا في عام ١٩٥٤م عندما صنع العلماء أول ألماس اصطناعي؛ وذلك بتعريض الكربون لدرجة حرارة وضغط مرتفعين جدًّا، فحوّل العلماء بودرة الجرافيت إلى بلورات صغيرة من الألماس بتعريضه لضغط أكثر من ٦٨٠٠٠ ضغط جوى ودرجة حرارة تقارب ١٧٠٠°س مدة ١٦ ساعة.

صحيح أنّ الألماس المصنّع هو من صنع الإنسان، ولكُّنه ليس زائفًا؛ فله جميع الخصائص التي للألماس الحقيقي؛ ومنها الصلابة والموصلية الجيدة للحرارة. ويدَّعي الخبراء قدرتهم على تحديد الألماس الصناعي لاحتوائه على شوائب صغيرة من الفلزات (المستخدمة في عملية التصنيع)، ولأنّ تلألؤه يختلف عن تلألؤ الألماس الطبيعي. وفي الحقيقة فإنّ الموادّ المصنعة عمومًا تستخدم لأغراض صناعية؛ وذلك لأن الألماس المصنع أقل تكلفة من الألماس الطبيعي، وكذلك فإنه يمكن تصنيع الألماس بالحجم والشكل المطلوبين. ويمكن القول بأنَّه إذا تقدمت التقنية في تصنيع الألماس فسوف يضاهي الألماس الطبيعي، وسيستخدم في الحلى كما يستخدم الألماس الطبيعي.

بحث استكشف تاريخ الألماس الطبيعي والمصنّع، ووضّح الفرو بينهما واستعمالات كل منهما. اعرض على زملائك ما توصلت إليه من نتائج.

العلــوم ح عبر المواقع الإلكترونية ارجع إلى المواقع الإلكترونية عبر شبكة الإنترنت.


مراحعـة الأفكار الرئىسـة

الحرس الأول الصيغ والمعادلات الكيميائية

- ١. تسبب التفاعلات الكيميائية غالبًا تغيّر ات ملحوظة، منها تغير اللون أو الرائحة، وإطلاق أو امتصاص الحرارة أو الضوء، أو إطلاق الغازات.
- ٢. المعادلة الكيميائية طريقة مختصرة لكتابة ما يحدث في التفاعل الكيميائي، حيث تستخدم رموز في التعبير عن ٣٠ تتأثر سرعة التفاعل الكيميائي بدرجات الحرارة، المتفاعلات والنواتج، وتبين أحيانًا ما إذا كانت الطاقة متحررة أم ممتصة.
 - ٣. يتحقق قانون حفظ الكتلة في المعادلة الكيميائية الموزونة التي تتساوى فيها أعداد ذرات العناصر نفسها في التفاعلات والنواتج.

الدرس الثاني سرعة التفاعلات الكيميائية

- ١. تقاس سرعة التفاعل بمدى استهلاك المتفاعلات أو تكوُّن النواتج.
- لجميع التفاعلات طاقة تنشيط، وهي الحد الأدني من الطاقة المطلوبة لبدء التفاعل.
- وتركيز المتفاعلات، ومساحة سطح المادّة المتفاعلة.
- تعمل المحفزات على تسريع التفاعل دون أن تُستهلك، بينما تعمل المثبطات على إبطاء سرعة التفاعل.
- الإنزيمات جزيئات بروتين تعمل بوصفها محفزات في خلايا الجسم.

١٣. أيّ ممّا يلي يصف العامل المحفز؟

- أ. هو من الموادّ المتفاعلة
- ب. يسرع التفاعل الكيميائي
 - ج. هو من المواد الناتجة
- د. يمكن استخدامه بدلاً من المثبطات

١٤. أي ممّا يلي لا يعد دليلاً على حدوث تفاعل كيميائي؟

- أ. تحوّل طعم الحليب إلى طعم مرّ
- ب. تكاثف بخار الماء على زجاج نافذة
- ج. تصاعد رائحة قوية من البيض المكسور
- د. تحوّل لون شريحة البطاطس إلى اللون الغامق

١٥. أيِّ الجمل التالية لا تُعبّر عن قانون حفظ الكتلة؟

- أ. كتلة المواد الناتجة يجب أن تساوي كتلة المواد المتفاعلة.
 - ب. ذرات العنصر الواحد في المتفاعلات تساوي ذرات العنصر نفسه في النواتج.
 - ج. ينتج عن التفاعل أنواع جديدة من الذرات.
 - د. الذرات لا تُفقد ولكن يعاد ترتيبها.

17. المعادلة الكيميائية الموزونة يجب أن تحوي أعدادًا متساوية في كلا الطرفين من....

- أ. الذرات ج. المواد المتفاعلة
 - ب. الجزيئات د. المركبات

١٧. أي مما يأتي **لا يؤثر** في سرعة التفاعل؟

- أ. موازنة المعادلة ج. الحرارة
- ب. مساحة السطح د. التركيز

استخدام المفردات

قارن بين كل زوجين من المصطلحات التالية:

- ١. التفاعل الطارد للحرارة التفاعل الماص للحرارة
 - ٢. طاقة التنشيط سرعة التفاعل
 - ٣. المواد المتفاعلة النواتج
 - ٤. المحفزات المثبطات
 - التركيز سرعة التفاعل
 - ٦. المعادلة الكيميائية المواد المتفاعلة
 - ٧. المثبطات المواد الناتجة
 - المحفزات المعادلة الكيميائية
 - ٩. سرعة التفاعل الإنزيمات

تثبيت المفاهيم

اختر رمز الإجابة الصحيحة فيما يلي:

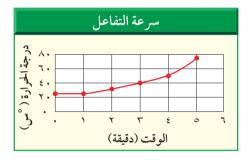
- ١٠. لإبطاء سرعة التفاعل الكيميائي يجب إضافة:
 - أ. عامل محفز ج. عامل مثبط
 - ب. مواد متفاعلة د. مواد ناتجة

١١. أيّ ممّا يلي يعد تغيرًا كيميائيًّا؟

- أ. تمزيق ورقة
- ب. تحول الشمع السائل إلى صلب
 - ج. كسر بيضة نيئة
 - د. تكون راسب من الصابون

١٢. أي مما يلي قد يبطيء سرعة التفاعل الكيميائي؟

- أ. زيادة درجة الحرارة ج. تقليل تركيز المواد
 المتفاعلة
- ب. زيادة تركيز المواد المتفاعلة د. إضافة عامل محفز


مراجعة الفصل

أنشطة تقويم الأداء

٢٤. صمّم لوحة اكتب قائمة ببعض الموادّ الحافظة التي توجد في الأطعمة، واعرض نتيجة بحثك على زملائك من خلال لوحة.

تطبيق الرياضيات

استخدم الرسم البياني التالي للإجابة عن السؤال ٢٠.

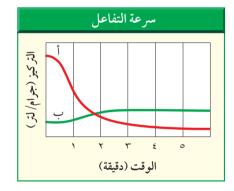
. ٢٥. سرعة التفاعل كم يستغرق التفاعل لتصل درجة الحرارة إلى ٥٠°س؟

٢٦. المعادلة الكيميائية

 $3Na + AlCl_3 \rightarrow 3NaCl + Al$ کے ذرة من الألومنيوم تنتج إذا تفاعلت $^{\circ}$ ذرة من الصوديوم؟

- العامل المحفز يُستخدم الخارصين عاملًا محفزًا لإبطاء زمن التفاعل بنسبة ٣٠٪، فإذا كان الزمن الطبيعي اللازم لإنهاء التفاعل هو ٣ ساعات، فكم يستغرق التفاعل مع وجود محفز؟
- ۲۸. جزیئات إذا علمت أنّ كل ۱۰۷,۹ جم من الفضة تحتوي على ۲۳،۰۲ × ^{۲۳} ذرة فضة، فكم ذرة فضة توجد في كل مما يأتي؟

أ. ۵۳,۹٥ جم.


ب.٧, ٣٢٣ جم.

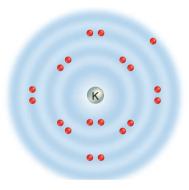
ج. ۱۰,۷۹ جم.

التفكيرالناقد

- 1. السبب والنتيجة يبقى الخيار المخلل صالحًا للأكل فترة أطول من الخيار الطازج. فسر ذلك.
- 14. حلّل إذا تعرض دورق فيه ماء لأشعة الشمس يصبح ساخنًا، فهل هذا تفاعل كيميائي؟ فسر ذلك.
 - · ٢ . ميّز هل (Ag₂S) هو نفسه (Ag₂S)؟ وضّح ذلك.
- 11. استنتج تُدعك شرائح التفاح بعصير الليمون حتى لا يصبح لونها بنيًّا. وضّح دور عصير الليمون في هذه الحالة.

استخدم الرسم البياني التالي للإجابة عن السؤال ٢٢.

- ۲۲. فسر يمثل الخطان البيانيان الأحمر والأخضر تغيُّر تركيز المركب (أ) والمركب (ب) على الترتيب خلال التفاعل الكيميائي.
 - أ. أي المركبين يعد مادة متفاعلة؟
 - ب. أي المركبين يعد مادة ناتجة؟
- ج. في أيّ مرحلة من مراحل التفاعل يكون تغيّر تركيز الموادّ المتفاعلة كبيرًا؟
- ٢٣. كون فرضية عندما تقوم بتنظيف الخزانة التي تحت مغسلة المطبخ تجدأنّ الأنبوب قد اعتراه الصدأ كليًّا، فهل تكون كتلة الأنبوب الصدئ أكبر أم أقلّ من كتلة الأنبوب الجديد؟ فسّر ذلك.


الجزء الأول: أسئلة الاختيار من متعدد

اختر رمز الإجابة الصحيحة فيما يلى:

الصوديوم مع الفلور لتكوين فلوريد الصوديوم (NaF) وهو مكون أساسي في معجون الأسنان.
 في هذه الحالة يكون للصوديوم التوزيع الإلكتروني المماثل لعنصر:

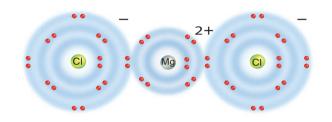
أ. النيون ج. الماغنسيومب. الليثيوم د. الكلور

استعن بالرسم التالي للإجابة عن السؤالين ٢ و٣.

٢. يوضّح الرسم أعلاه التوزيع الإلكتروني للبوتاسيوم،
 فكيف يصل إلى حالة الاستقرار؟

أ. يكتسب إلكترونًا ج. يكتسب إلكترونينب. يفقد إلكترونين

٣. ينتمي عنصر البوتاسيوم إلى عناصر المجموعة ١ من الجدول الدوري، فما اسم هذه المجموعة؟


أ. الهالوجينات ج. الفلزات القلوية
 ب. الغازات النبيلة د. الفلزات القلوية الترابية

3. ما نوع الرابطة التي تربط بين ذرات جزيء غاز النيتروجين (N_2) ?

أ. أيونية ج. أحادية

ب. ثنائية د. ثلاثية

استخدم الرسم التالي للإجابة عن السؤالين ٥ و٦:

•. يوضّح الرسم أعلاه التوزيع الإلكتروني لكلوريد الماغنسيوم، فما الصيغة الكيميائية الصحيحة لهذا المركّب؟

 Mg_2Cl_2 . د. MgCl

 ٦. مانوع الرابطة التي تربط بين عناصر مركّب كلوريد الماغنسيوم؟

أ. أيونية ج. قطبية

ب. فلزية د. تساهمية

الم عدد من الإلكترونات يمكن أن يستوعبه مجال الطاقة الثالث في الذرة؟

أ. ٨

ب.۱۸

استعن بالصورة التالية للإجابة عن السؤالين ٨ و٩.

مع الصورة أعلاه عملية تفاعل النحاس Cu مونسح الصورة أعلاه عملية تفاعل النحاس $AgNO_3$ نترات الفضية $Cu(NO_3)_2$ والفضة $Cu(NO_3)_2$

 $2AgNO_3 + Cu \rightarrow Cu(NO_3)_2 + 2Ag$ ما المصطلح الذي يصف هذا التفاعل

أ. عامل محفز ج. عامل مثبط

ب. تغیر کیمیائی د. تغیر فیزیائی

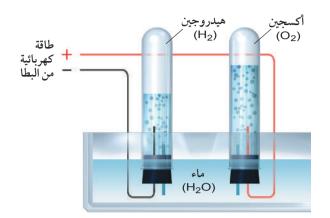
ما المصطلح الأنسب الذي يصف الفضة في التفاعل؟

أ. متفاعل ج. إنزيم

ب. عامل محفز د. ناتج

 ١٠ مـا المصطلح الذي يصف الحد الأدنى من الطاقة اللازمة لبدء التفاعل؟

أ. عامل محفز ج. طاقة التنشيط


ب.سرعة التفاعل د. الإنزيمات

١١. ما الذي يجب موازنته في المعادلة الكيميائية؟

أ. المركبات ج. الجزيئات

ب.الذرات د. الجزيئات والذرات

استعن بالصورة التالية للإجابة عن السؤالين ١٢ و١٣٠.

11. توضّح الصورة أعلاه عملية التحليل الكهربائي للماء، حيث يتفكك جزيء الماء إلى هيدروجين وأكسجين. أيّ المعادلات التالية يعبر بصورة صحيحة عن هذه العملة؟

$$H_2O + d$$
 طاقة $H_2 + O_2$ أ.

$$H_2O + d$$
 طاقة $\rightarrow 2H_2 + O_2$.

$$2H_2O$$
 + طاقة $\rightarrow 2H_2+O_2$ ج

$$2H_2O + 4$$
د. $2H_2 + 2O_2 + 2H_2 + 2O_3$

۱۳. كم ذرة هيدروجين نتجت بعد حدوث التفاعل، مقابل كل ذرة هيدروجين وجدت قبل التفاعل؟

أ. ١

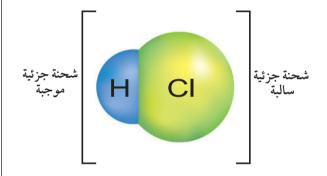
١٤. ما أهميّة المثبطات في التفاعل الكيميائي؟

أ. تقلّل من فترة صلاحية الطعام.

ب. تزيد من مساحة السطح.

ج. تقلل من سرعة التفاعل الكيميائي.

د. تزيد من سرعة التفاعل الكيميائي.


الجزء الثاني: أسئلة الإجابات القصيرة

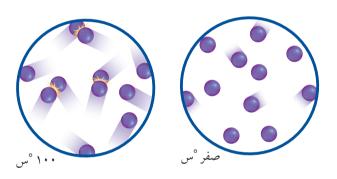
- ١٥. ما السحابة الإلكترونية؟
- ١٦. بيِّن الخطأ في العبارة التالية:

جميع الروابط التساهمية بين الذرات روابط قطبية؛ لأنّ كلّ عنصر يختلف قليلاً في قدرته على جذب الإلكترونات.

أعط مثالاً يدعم إجابتك.

استخدم الرسم التالي للإجابة عن السؤالين ١٧ و١٨.

- الرسم أعلاه كيف يرتبط الهيدروجين والكلور معًا ليكونا جزيئًا قطبيًا، وضح لماذا تكون الرابطة بينهما قطبية؟
- 11. ارسم التمثيل النقطي لإلكترونات الجزيء الموضح في الرسم التوضيحي أعلاه.
 - ١٩. ما اسم المجموعة ١٧ من الجدول الدوري؟
- ٢. اذكر اختلافين بين الإلكترونات التي تدور حول النواة والكواكب التي تدور حول الشمس.
- ٢١. ما عائلة العناصر التي كانت معروفة باسم الغازات
 الخاملة؟ ولم تم تغيير هذا الاسم؟


٢٢. إذا تغيّر حجم المادّة ولم تتغير أيّ خاصية أخرى لها، فهل يعد هذا تغيرًا فيزيائيًّا أم تغيرًا كيميائيًّا؟ وضّح إجابتك.

استخدم المعادلة الكيميائية التالية للإجابة عن السؤال ٢٣.

 $CaCl_2 + 2AgNO_3 \rightarrow 2$ + $Ca(NO_3)_2$

 $CaCl_2$ عند منزج محلولين من كلوريد الكالسيوم $AgNO_3$ ونترات الفضة $AgNO_3$ معًا، تنتج نترات الكالسيوم $Ca(NO_3)_2$ وراسب أبيض. حدّد الصيغة الكيميائية لهذا الراسب.

استخدم الشكل التالى للإجابة عن السؤالين ٢٤ و ٢٠.

- ۲٤. يوضّح الشكل أعلاه حركة الذرات عند صفر °س، و٠٠٠ °س. ماذا يحدث لحركة الذرات إذا انخفضت درجة الحرارة إلى ما دون الصفر °س؟
- ٢٥. صف كيف يؤثر الاختلاف في حركة الذرات عند درجتي
 حرارة مختلفتين في سرعة التفاعلات الكيميائية؟
- ٢٦. هل طاقة التنشيط ضرورية للتفاعلات الطاردة للطاقة؟
 وضّح إجابتك.

استخدم الصورة التالية للإجابة عن السؤالين ٣٤ و٣٥.

- ٣٤. توضّح الصورة أعلاه غابة احترقت عندما ضرب البرق الشجر، صف التفاعل الكيميائي الذي يحدث عند احتراق الشجر، وهل هذا التفاعل طارد أم ماصّ للطاقة؟ ما معنى ذلك؟ وكيف يؤدي هذا إلى انتشار اللّهب؟
- ٣٥. إنّ احتراق جذوع الأشجار تفاعل كيميائي، فما الذي يمنع حدوث هذا التفاعل الكيميائي عندما لا يكون هناك برق (تلقائبًا)؟
- ٣٦. فسر كيف يمكن لسطح المادّة المعرض للتفاعل أن يؤثر في سرعة التفاعل بين مادة وأخرى؟ أعط أمثلة.
- من التفاعلات التي تحدث في عملية تشكيل الزجاج ${
 m SiO}_2$ من التفاعلات الكالسيوم ${
 m CaCO}_3$ والسليكا ${
 m CaSiO}_3$ لتكوين سليكات الكالسيوم ${
 m CaSiO}_3$ وثاني أكسيد الكربون ${
 m CO}_2$:

$$CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2$$

صف هذا التفاعل مستخدمًا أسماء الموادّ الكيميائية، ثمّ وضّح أيّ هذه الروابط تم كسرها، وكيفية ترتيب الذرات لتكوين روابط جديدة.

الجزء الثالث: أسئلة الإجابات المفتوحة

- بنفذ الكثير من التجارب العلمية في بيئة خالية من الأكسجين. لهذا تُجرى مثل هذه التجارب في أوعية مليئة بغاز الأرجون. صف توزيع الإلكترونات في ذرة الأرجون. ولماذا يعد الأرجون عنصرًا ملائمًا لمثّل هذه التجارب؟
- ٢٨. أي المجموعات في الجدول الدوري تسمى الهالوجينات؟
 صفّ التوزيع الإلكتروني لعناصرها، ونشاطها الكيميائي،
 واذكر عنصرين ينتميان إلى هذه المجموعة.
- ٢٩. ما الرابطة الأيونية؟ صف كيف تنشأ الرابطة الأيونية في مركب كلوريد الصوديوم؟
- ٣٠. ما المقصود بالرابطة الفلزية؟ وكيف تؤثر في خصائص الفلزات؟
- ٣١. فسر وجود الجزيئات القطبية، وعدم وجود المركبات الأيونية القطبية.

استخدم الصورة التالية للإجابة عن السؤالين ٣٢ و٣٣.

- ٣٢. اشرح ما يحدث في الصورة أعلاه، ثم وضح ما قد يحدث إذا لامس البالون الماء.
- ٣٣. ارسم نموذجًا توضّح فيه التوزيع الإلكتروني لجزيء الماء، ووضّح كيف يؤثر موقع الإلكترونات فيما يحدث في الصورة أعلاه.

مصادر تعليمية للطالب

Y • V	مهارات العروض الصفية	
Y • A	الجدول الدوري للعناصر	
۲۱.	مهارات استعمال الحاسوب	

- مسرد المصطلحات......

مهارات العروض الصفية

تطوير العروض الصفية المتعددة الوسائط

معظم العروض الصفية تكون متحركة إذا احتوت على أشكال وصور وأفلام أو تسجيلات صوتية. تشمل العروض الصفية المتعددة الوسائط استعمال الصوتيات، وأجهزة العرض فوق الرأسية، والتلفاز، والحواسيب، وغيرها.

تعلم المهارة

حدد النقاط الرئيسة في عرضك التقديمي الصفي، وأنواع الوسائط التي تفضل استعمالها لتوضيح هذه النقاط.

- تأكد من معرفتك باستعمال الأدوات التي سوف ستعمل عليها.
- ◄ حضّر العرض التقديمي الصفي باستعمال الأدوات والأجهزة عدة مرات.
- استفد من مساعدة مشرفك لتشغيل أو توصيل الإضاءة لك، وكن حريصًا على عمل عرضك التقديمي بمشاركته.
 - اذا كان ممكنًا فافحص الأجهزة حتى تتأكد من عملها بشكل جيد.

العروض الصفية باستخدام الحاسوب

هناك العديد من برامج الحاسوب التفاعلية المختلفة التي تستطيع استعمالها لدعم عرضك الصفي. وكثير من الحواسيب فيها محركات أقراص تستطيع تشغيل الأقراص المدمجة وأقراص الأفلام الرقمية. وهناك طريقة أخرى تستخدم فيها الحاسوب لمساعدتك في عرضك الصفي، وهي عمل عرض الشرائح باستخدام برامج معينة تسمح بحركات مميزة تضاف لما تقدمه.

تعلم المهارة

بالإضافة إلى عمل العروض الصفية التقديمية باستعمال الحاسوب فإنك تحتاج إلى عدة أدوات، منها أدوات الصور التقليدية وبرامج الرسوم، وكذلك برامج تصميم الحركات الفنية، وأيضًا برامج التأليف والكتابة التي يجمع بعضها مع بعض لعمل متكامل. ومن المهم أن تعرف كيف تعمل هذه الأدوات ، وطرائق استعمالها.


- في الغالب، يكون نقل الألوان والصور أفضل من نقل الكلمات وحدها. لذلك استعمل الطريقة المثلى لنقل تصميمك.
 - كرر العرض الصفي أكثر من مرة.
 - كرر العرض الصفى باستعمال الأدوات المتاحة لك.
- انتبه إلى الحضور، واستمر في انتباهك؛ لأن الهدف من استعمال الحاسوب ليس مجرد تقديم العرض، وإنما لتساعد الحضور على فهم النقاط والأفكار التي يتضمنها عرضك الصفي.

الجدول الدوري للعناصر

فلز شبه فلز لافلز			13	14	15	16	17	Helium 2	
			13					He 4.003	/
	ون صندوق كل ن فلزًّا أو شبه فل		Boron 5 B 10.811	Carbon 6 C 12.011	Nitrogen 7 N 14.007	Oxygen 8	Fluorine 9	Neon 10 Ne 20.180	/
10	11_	12	Aluminum 13 Al 26.982	Silicon 14 Si 28.086	Phosphorus 15 P 30.974	Sulfur 16 S 32.065	Chlorine 17	Argon 18 Ar 39.948	
Nickel 28 Ni 58.693	Copper 29 Cu 63.546	Zinc 30 Zn 65.409	Gallium 31 Ga 69.723	Germanium 32 Ge 72.64	Arsenic 33 As 74.922	Selenium 34 Se 78.96	Bromine 35 Br 79.904	Krypton 36 Kr 83.798	
Palladium 46 Pd 106.42	Silver 47 Ag 107.868	Cadmium 48 Cd 112.411	Indium 49 In 114.818	Tin 50 Sn 118.710	Antimony 51 Sb 121.760	Tellurium 52 Te 127.60	Iodine 53 I 126.904	Xenon 54 Xe 131.293	/
Platinum 78 Pt 195.078	Gold 79 Au 196.967	Mercury 80 Hg 200.59	Thallium 81 TI 204.383	Lead 82 Pb 207.2	Bismuth 83 Bi 208.980	Polonium 84 Po (209)	Astatine 85 At (210)	Radon 86 Rn (222)	
Darmstadtium 110 Ds (281)	Roentgenium 111 (o) Rg (272)	Ununbium * 112	Ununtrium * 113 Uut (284)	Ununquadium * 114 Uuq (289)	Ununpentium * 115 Uup (288)	Ununhexium * 116 Uuh (291)		Ununoctium * 118 Uuo (294)	

أ سياء رموز العناصر ١١٢، ١١٣، ١١٤، ١١٥، ١١٦، ١١٨، ١١٨ مؤقتة، سيتم اختيار أسياء نهائية لها عند التأكد من اكتشافها.

Europium 63 Eu 151.964	Gadolinium 64 Gd 157.25	Terbium 65 Tb 158.925	Dysprosium 66 Dy 162.500	Holmium 67 Ho 164.930	Erbium 68 Er 167.259	Thulium 69 Tm 168.934	Ytterbium 70 Yb 173.04	Lutetium 71 ————————————————————————————————————	
Americium 95 Am (243)	Curium 96	Berkelium 97	Californium 98	Einsteinium 99 Es (252)	Fermium 100 • Fm (257)	Mendelevium 101 o Md (258)	Nobelium 102	Lawrencium 103 Lr (262)	

مهارات استعمال الحاسوب

يهتم دارسو العلوم بالحاسوب لتسجيل وتخزين البيانات، وتحليل نتائج البحث والاستقصاء. وعند عملك في المختبر ستحتاج إلى استعمال الحاسوب لكتابة التقرير وتنظيم الجداول على الأقل. ولذلك لابد أن يكون لديك قدرة مناسبة في مهارات الحاسوب.

إن استعمال الحاسوب يلقي بعض المسؤوليات، منها تبني قضايا الملكية الفكرية والأمن والخصوصية بشكل واضح، وتذكر إذا لم تكن مؤلف المعلومات التي تستعملها فلا بد من توفير مصدر لمعلوماتك على أن أي شيئ على حاسوبك يمكن اختراقه من قبل الآخرين، لذا لا تضع على حاسوبك أشياء لا تريد للآخرين أن يطلعوا عليها. ولتوفير قدر أكبر من الأمان استعمل كلمة مرور للحاسوب الذي تستعمله.

استعمال برنامج معالجة النصوص

يسمح لك البرنامج بكتابة النصوص وتغييرها عدة مرات ومن ثم طباعتها. ويسمى هذا البرنامج بمعالج النصوص. ويمكن استخدامه أيضًا لتنظيم الجداول.

تعلم المهارة

يبدأ استعمال برنامج معالجة النصوص في الغالب بمستند جديد يظهر على الشاشة يسمى مستندًا Document. لتفتح المستند الجديد انقر على أيقونة (جديد New) في شريط الأدوات. وتساعدك هذه الخطوة على تنسيق المستند.

- سينتقل البرنامج تلقائيًّا إلى السطر الأول في المستند. وللانتقال إلى فقرة جديدة انقر مفتاح إدخال Enter.
- يمكن التحكم في بعض أنواع الرموز وتدعى الرموز غير المطبوعة بالضغط على أيقونة إظهار/ إخفاء Show /Hide الموجودة في شريط الأدوات.
- لإدراج نص حرك المؤشر إلى النقطة التي تريد عندها إدراج النص، وانقر على زر الفأرة الأيسر، ثم اطبع النص المطلوب.
- لنقل عدة أسطر من النص إلى مكان آخر في المستند حدّد النص ثم انقر على أيقونة (قص Cut) في شريط الأدوات، ثم حرك المؤشر إلى النقطة التي تريد نقل النص إليها وانقر على أيقونة (إلصاق Paste). وإذا أخطأت فاضغط على أيقونة (تراجع Undo).
- لا توفر خاصية التدقيق الإملائي اكتشاف الأخطاء الإملائية إذا كانت الكلمة المكتوبة صحيحة ولكنها ليست المطلوبة، فمثلًا لا يكتشف المدقق الإملائي الخطأ إذا كتبت كلمة (حمل) والمقصود كلمة (جمل)، لذا عليك أن تعيد قراءة النص لاكتشاف الأخطاء.
 - يمكنك تعرّف مزايا أكثر لبرنامج معالج النصوص ودليل استعماله بالنقر على أيقونة المساعدة (help).
- يمكن التنسيق بين قواعد البيانات والجداول الإلكترونية والرسومات والمستند بنسخها من المستند الأصلي وإلصاقها في مستندك، أو باستعمال برنامج آخر اسمه (إن ديزاين)، وهو برنامج يساعد على تنسيق وإظهار مستندك بصورة احترافية.

مهارات استعمال الحاسوب

استعمال قواعد البيانات

مجموعة من البيانات والحقائق التي تخزن في الحاسوب في حقول مختلفة تسمى قواعد البيانات. وقواعد البيانات تحتاج إليها. البيانات تساعد على تمييز البيانات بعضها من بعض وتنظيمها حسب الحقول التي تحتاج إليها.

تعلم المهارة

برامج الحاسوب التي تسمح لك بإنشاء قواعد البيانات الخاصة تسمى إدارة قواعد البيانات. هذا البرنامج يسمح بإضافة أو حذف أو تغيير البيانات، وأنت تحتاج إلى الوقت لاكتشاف مزايا برمجيات قواعد البيانات.

- حدد كيف ترغب في تنظيم المعلومات.
- تتبع تعليمات المعالج التطبيقي لإعداد الحقول المطلوبة.
 - أدخل البيانات الخاصة بكل حقل.
 - تتبع تعليمات المعالج لتصنيف البيانات حسب أهميتها.
- قيِّم البيانات المتوافرة لديك، وأضف أو احذف أو غيّر البيانات حسب الحاجة.

استعمال الشبكة الإلكترونية (الإنترنت)

الإنترنت شبكة من الحواسيب العالمية التي يمكن بوساطتها تخزين المعلومات وتبادلها. ولاستعمال الإنترنت تحتاج إلى جهازك الخاص لربطه مع شبكة الاتصالات، وتحتاج إلى حساب لدخولك إلى الإنترنت.

تعلم المهارة

للدخول إلى شبكة المعلومات استعمل متصفح الإنترنت الذي يسمح لك باستعراض وتصفح صفحات الإنترنت حول العالم. كل صفحة هي موقع خاص، ولكل موقع عنوان خاص به يسمى URL وإذا أردت إيجاد متصفح الإنترنت فاتبع الخطوات التالية: (وهي أيضًا توضح كيف تستطيع البحث عن قواعد البيانات).

- من الأفضل أن يكون لك جهازك الخاص، وإذا كنت تعرف ما تبحث عنه فحاول تضييق مجال بحثك حتى تجد ما تبحث عنه بسهولة.
- المواقع الإلكترونية التي تنتهي بـ (com.) هي المواقع الإلكترونية العامة والشائعة، والمواقع الإلكترونية التي تنتهي بـ: (gov. أو edu. أو org.)، هي مواقع غير ربحية، أو تعليمية، أو حكومية.
- حدّث الصفحة الرئيسة لديك وبطريقة سهلة، وعند تحديث الموقع الإلكتروني لا تضع صورًا خاصة أو تكشف معلوماتك الشخصية مثل موقع الإقامة، وأرقام الهاتف، والأسماء الخاصة بك، لأن مدرستك أو مجتمعك لديهم القدرة على أن يطلعوا عليك. إن أبسط فهم للغة رفع المعلومات المشفرة (HTML) تسمى برامج التأليف والكتابة، ويمكن تحميلها بحرية من عدة مواقع إلكترونية مختلفة. وهذه البرامج تسمح بترتيب النصوص والصور بالطريقة نفسها التي تكتب بها شفرة HTML.

مهارات استعمال الحاسوب

استعمال أوراق البيانات

أوراق البيانات الموضحة في الشكل المبين تستطيع تمثيل الاقترانات الرياضية بأي نوع من البيانات التي تُرتب في أعمدة وصفوف، وذلك من خلال إدخال معادلة بسيطة في خلية ورقة

البيانات، بحيث يستطيع البرنامج تنظيم العمليات في خلايا مخصصة: صفو ف، أو أعمدة.

| Test filts | Test | T

تعلم المهارة

كل عمود يشار إليه بحرف، كل صف يشار إليه برقم، وكل نقطة التقاء بين العمود والصف تسمى خلية، وهي توصف بالاعتماد على مكان وجودها، فمثلاً (عمود A، صف 1) وصف للخلية (A1).

- قرر كيف تنظم البيانات وأدخلها في الصف والعمود الصحيحين.
- تستعمل أوراق البيانات معادلات معيارية أو معادلات متناسقة لحساب الخلايا.
- لعمل تعديل اضغط على الخلية لجعلها فعالة ثم أدخل البيانات أو الصيغة التي تريد تعديلها.
- البيانات تعرض بياناتك في رسوم وأشكال، عليك فقط أن تختار نوع الرسم الذي يمثل البيانات بطريقة أفضل.

استعمال برامج الرسم

إن إضافة الصور أو ما يسمى رسمًا إلى مستندك من الطرائق التي تجعل مستندك مثيرًا وذا معنى، هذه البرامج تضيف، وتعدل، وتبني رسومات. وهناك تنوع في برامج الرسومات. وتستخدم عدة أدوات للرسم، منها الفأرة، ولوحة المفاتيح، أو أية أدوات خاصة أخرى. إن بعض برامج الرسوم بسيطة، بينما بعضها الآخر معقد ويطلق عليها اسم البرامج المساعدة في التصميم الحاسوبي CAD) Computer-aided design).

تعلم المهارة

من المهم أن يكون لدينا فهم لبرامج الرسومات قبل استخدامها، حتى تحصل على أفضل نتيجة. وهذه الرسومات قد تدرج في مستندات معالج النصوص.

- تتوافر القصاصات الفنية Clipart في مواقع إلكترونية مختلفة، أو في الأقراص المدمجة (CD). وهذه الصور قد تُنسخ وتلصق في مستنداتك.
 - في البداية، حاول تعديل رسم موجود، ثم حاول تصميم رسوماتك الخاصة.
 - تتكون الصور من مستطيلات ملونة غاية في الدقة تسمى (pixels) وهي متباينة ومختلفة.
- يعتبر التصوير الضوئي الرقمي من طرائق إضافة الصور، وتستطيع نقل الصور الضوئية (الفوتوغرافية) من ذاكرة الكاميرا الرقمية إلى حاسوبك، ثم تعديلها وإضافتها إلى مستنداتك.
- تستطيع من خلال برامج الرسومات عمل حركات مختلفة، بحيث تسمح لك بالرسم وإضافة بعض الحركات عن طريق ربط الرسومات بأساسيات الرسم التلقائية. وهي ما سمى ربط الجزيئات.
 - تذكر التخزين دائمًا.

أشباه الفلزات؛ عناصر لها بعض خصائص الفلزات واللافلزات.

أشباه الموصلات: عناصر لا توصل الكهرباء بشكل جيد كما في الفلزات، ولكنّها توصلها أفضل من اللافلزات.

الأكتنيدات: السلسلة الثانية من العناصر الانتقالية الداخلية، التي تبدأ بعنصر الثوريوم وتنتهي باللورينسيوم.

الإلكترون: جسيم سالب الشحنة، يتحرّك في الفراغ المحيط بنواة الذرة.

آمن ضد الزلازل: وصف يطلق على مقدرة البناء على الصمود أمام الاهتزازات الناتجة عن الهزة الأرضية.

الإنزيمات: نوع من البروتينات ينظم التفاعلات الكيميائية في الخلية دون أن يتغير.

الأنود: القطب الموجب الشحنة، ويسمى المصعد.

الأيون: ذرة لها شحنة موجبة أو سالبة؛ لأنّها اكتسبت أو فقدت إلكترونًا أو أكثر.

بؤرة الزلزال: نقطة في أعماق الأرض، تتحرّر عندها الطاقة مسببة هزة أرضية.

البحث التجريبي: طريقة تستخدم للإجابة عن الأسئلة العلمية باختبار الفرضية من خلال استخدام خطوات متسلسلة ومنظمة بصورة صحيحة.

البحث الوصفي: يجيب عن الأسئلة العلمية من خلال الملاحظة.

البركان: هضبة أو جبل مخروطي الشكل، تتدفق

منه الصهارة الساخنة والموادّ الصلبة والغازات إلى سطح الأرض عبر فوهة.

البركان الدرعي: بركان واسع الامتداد قليل الانحدار؛ تكوّن نتيجة تراكم الطبقات البازلتية بعضها فوق بعض.

البركان المخروطي: بركان صغير نسبيًّا يتشكّل بفعل ثوران بركاني متوسط العنف.

البركان المركب: بركان شديد الانحدار يتشكّل نتيجة تراكم الطبقات المتعاقبة الناتجة عن الانفجارات البركانية العنيفة، ويتبع ذلك ثوران هادئ للبركان مشكلاً طبقة الصهارة.

البروتون: جسيم موجب الشحنة يوجد في نواة الذرة.

البقعة الساخنة: تنتج عن الصخور الساخنة والمنصهرة المندفعة من أعماق الأرض، وقد تؤدي إلى قذف الماجما عبر الستار والقشرة الأرضية، كما يمكن أن تشكّل براكين.

التحلّل الإشعاعي: تحرير جسيمات نوويّة وطاقة من نواة الذرة غير المستقرة.

التحوّل: تحول العنصر إلى عنصر آخر خلال التحلل الإشعاعي.

التركيز: يصف نسبة المذاب إلى المذيب في المحلول.

التفاعل الطارد للحرارة: تفاعل تتحرر خلاله الطاقة.

التفاعل الكيميائي: عمليّة تنتج تغيرًا كيميائيًّا، وينتج عنها موادّ جديدة لها خصائص مختلفة عن خصائص الموادّ المتفاعلة.

التفاعل الماصّ للحرارة: تفاعل كيميائي يتم فيه امتصاص للطاقة.

التقنية: تطبيق العلم في صناعة المنتجات، أو أدوات يمكن أن يستخدمها الناس، ومنها الحواسيب.

التمثيل النقطي للإلكترونات: رمز كيميائي يصف العنصر، ويكون محاطًا بعدة نقاط تمثّل عدد إلكترونات مجال الطاقة الخارجي.

الثابت: العامل الذي يبقى كما هو خلال التجربة.

الجزيء: جسيم متعادل يتكوّن عندما تتشارك الذرات بالإلكترونات.

جسيمات ألفا: جسيمات تحوي بروتونين ونيوترونين، وشحنتها +٢، وتكافئ نواة ذرة هيليوم ٤، وتُمثّل بالرمز α.

جسيمات بيتا: إلكترونات طاقتها كبيرة، تنطلق من النواة.

حضرة الانهدام: شقّ طويل منخفض يتشكّل بين الصفائح التكتونية المبتعد بعضها عن بعض في أماكن الحدود المتباعدة.

الدورة: الصف الأفقي لعناصر الجدول الدوري، وتتغير خصائص عناصر الدورة الواحدة تدريجيًّا وبشكل يمكن توقعه.

الرابطة الأيونية: الرابطة التي تنشأ بين أيونين شحنتهما مختلفة.

الرابطة التساهمية: رابطة كيميائية تنشأ عندما تتشارك الذرات بالإلكترونات.

الرابطة الفلزية: رابطة تنشأ عن تجاذب إلكترونات المجالات الخارجية لذرات الفلز مع الأنوية.

الرابطة القطبية: رابطة تنشأ عن المشاركة غير المتكافئة بالإلكترونات.

الرابطة الكيميائية: قوة تربط ذرتين إحداهما بالأخرى.

الزلزال: حركة لسطح الأرض تحدث عندما تتعدى الصخور الموجودة في باطن الأرض حدّ مرونتها فتنكسر فجأة ثم ترتدّ ارتدادًا مرنًا.

سرعة التفاعل: قياس مدى سرعة حدوث التفاعل الكيميائي.

السحابة الإلكترونية: منطقة تحيط بنواة الذرة، وتحوى إلكترونات.

السيزموجراف: جهاز يستخدم لتسجيل الأمواج الزلز الية.

الصدع: الكسر الذي يحدث في الصخور؛ نتيجة الحركة النسبية للكتلتين المتكونتين على جانبي الكسر، وينتج عنه صدع عكسي بفعل قوى الضغط، أو صدع عادي بفعل قوى الشدّ، أو صدع تحويلي (انز لاقي) بفعل قوى القص.

الصفيحة: جزء من الغلاف الصخري، يتحرك ببطء فوق الغلاف المائع.

الصيغة الكيميائية: رموز كيميائية وأرقام تبين أنواع ذرات العناصر المكونة للجزيء وأعدادها.

طاقة التنشيط: هي الحد الأدنى من الطاقة اللازمة لبدء التفاعل الكيميائي.

الطرائق العلميّة: طرائق لحلّ المشكلات يمكن أن تتضمن خطوات متسلسلة، وعمل نماذج، وتجارب مصممة بعناية.

العامل المساعد (المحفّز): مادة تساعد على تسريع التفاعل الكيميائي، ولا تُستهلك في أثناء التفاعل. العدد الذري: عدد البروتونات في نواة الذرة.

العدد الكتلي: عدد يُمثّل مجموع البروتونات والنيوترونات في نواة الذرة.

العلم: طريقة أو خطوات تستخدمها في استقصاء ما يجري حولك، وقد يوفّر إجابات ممكنة عن أسئلتك، ويشكّل جزءًا من الحياة اليومية.

عمر النصف: الزمن اللازم لنصف كتلة عينة من نظير مشع لتتحلل.

العناصر الانتقائية: عناصر المجموعات ٣ – ١٢ من الجدول الدوري، والتي تعد جميعها فلزات.

العناصر المصنعة: عناصر تصنع في المختبرات والمفاعلات النووية.

العناصر الممثلة: عناصر المجموعات ١-٢، والمجموعات من ١٣ - ١٨، في الجدول الدوري وهي تشمل الفلزات واللافلزات وأشباه الفلزات.

العنصر: مادّة لا يمكن تجزئتها إلى موادّ أصغر منها. العينة الضابطة: عينة تُعامل مثل باقي المجموعات التجريبية ولا تتعرض لأثر المتغير المستقل لمقارنة نتائجها بنتائج تلك العينات التي تعرضت لأثر المتغير المستقل.

الغازات النبيلة: عناصر المجموعة ١٨ في الجدول الدوري.

الغلاف الصخري: يتكون من القشرة الأرضية وأعلى الستار، ومقسم إلى قطع تسمى كل منها صفيحة.

الغلاف المائع: طبقة لدنة من الستار تقع أسفل الغلاف الصخرى.

الفرضية: هي توقع أو تعبير قابل للاختبار، وقد تتكوّن من المعرفة والملاحظات السابقة والمعلومات الجديدة.

الفلز: عنصر له لمعان، وقابل للطرق والسحب والتشكيل، وموصل جيد للكهرباء والحرارة.

الفلزات القلوية: عناصر المجموعة ١ في الجدول الدوري.

الفلزات القلوية الأرضية : عناصر المجموعة ٢ في الجدول الدوري.

قوة الزلزال: مقياس للطاقة المتحررة من الزلزال. **الكاثود:** القطب السالب الشحنة، ويسمى المهبط.

اللابة: صخور منصهرة تتدفق على سطح الأرض. اللافلزات: عناصر تكون عادة غازات أو صلبة

اللافلراك؛ عناصر تحول عاده عارات او صلبه هشة عند درجة حرارة الغرفة، وهي رديئة التوصيل للكهرباء والحرارة.

اللانثانيدات: السلسلة الأولى من العناصر الانتقالية الداخلية، وتبدأ بعنصر السيريوم، وتنتهي بعنصر اللوتيتيوم.

المتغير التابع: العامل الذي يتم قياسه في أثناء التجربة.

المتغير المستقل: العامل الذي يمكن أن يتغير في أثناء التجربة.

المتفاعلات: المواد البادئة للتفاعل.

المثبطات: موادّ تعمل على إبطاء التفاعل الكيميائي، وتجعل عمليّة تكوين الموادّ الناتجة تحتاج زمنًا أطول.

المجموعة: عائلة من العناصر في الجدول الدوري، لها خصائص فيزيائية وكيميائية متشابهة.

المركب: مادة تتكون من عنصرين أو أكثر.

مركز السطحي للزلزال: نقطة على سطح الأرض تقع فوق بؤرة الزلزال مباشرة.

مستوى الطاقة : المواقع المختلفة للإلكترون في الذرة.

المعادلة الكيميائية: صيغة مختصرة توضّح الموادّ المتفاعلة والموادّ الناتجة في التفاعل الكيميائي، وأحيانًا توضّح ما إذا استخدمت فيه طاقة أو تحرّرت منه.

موجات التسونامي: موجات زلزالية بحرية قوية، تبدأ من هزة تحصل في قاع المحيط، وقد تصل إلى ارتفاع ٣٠ م عندما تقترب من اليابسة، مسببة الدمار في منطقة الشاطئ.

الموجة الزلزالية: موجات الهزة الأرضية التي تتضمن كلًّا من الموجات الأولية والموجات الثانوية والموجات السطحية.

النظائر: ذرات للعنصر نفسه، تختلف في عدد النيوترونات.

النموذج : هو ما يمثّل الأشياء التي تحدث ببطء شديد أو بسرعة كبيرة، أو الأشياء الكبيرة جدًّا أو الصغيرة جدًّا، أو الخطيرة جدًّا، أو التي يصعب ملاحظتها مباشرة، أو الأشياء ذات التكلفة العالية.

النواتج: المواد الناتجة عن التفاعل.

النيوترون: جسيم غير مشحون في نواة الذرة، وكتلته تساوي كتلة البروتون.

الهالوجينات: عناصر المجموعة ١٧ في الجدول الدوري.